FuRAM – Follow-up on research needs for industrialization of metal additive manufacturing

Annika Strondl and Markus Uhlirsch, Swerim Sven Karlsson, Patrik Hallberg and Magnus Widfeldt, RISE IVF Eduard Hryha and Lars Nyborg, Chalmers University Erik Lindgren, University West Greta Lindwall, KTH

Project number: 10936 Published: 2021-08-19

Distribution

Denna rapport är öppen.

Med stöd från

Strategiska innovationsprogram

FuRAM – Follow-up on research needs for industrialization of metal additive manufacturing

Annika Strondl and Markus Uhlirsch, Swerim, Sven Karlsson, Patrik Hallberg, and Magnus Widfeldt, RISE IVF, Eduard Hryha and Lars Nyborg, Chalmers University, Erik Lindgren, University West, Greta Lindwall, KTH

Report number. MEF21192

2021-08-19

Research Report

Open

Title	FuRAM – Follow-up on research needs for industrialization of metal additive manufacturing
Authors	Annika Strondl and Markus Uhlirsch, Swerim, Sven Karlsson, Patrik Hallberg, and Magnus Widfeldt, RISE IVF, Eduard Hryha and Lars Nyborg, Chalmers University, Erik Lindgren, University West, Greta Lindwall, KTH
Publication date	2021-08-19
Report number	MEF21192
Status	Open
Project number	Vinnova 2020-04328
Project leader	Annika Strondl, Swerim
Research Area	Powder Materials and Additive Manufacturing
Financing	Vinnova, SIP Metallic Materials

FuRAM – Follow-up on research needs for industrialization of metal additive manufacturing

Annika Strondl and Markus Uhlirsch, Swerim, Sven Karlsson, Patrik Hallberg, and Magnus Widfeldt, RISE IVF, Eduard Hryha and Lars Nyborg, Chalmers University, Erik Lindgren, University West, Greta Lindwall, KTH

Report number MEF21192

Abstract

Metal additive manufacturing (AM) has great potential for certain applications and many good examples have been shown. Some products are already in production, globally as well as in Sweden, and the market forecasts show exponential growth the coming years. In 2016-2017, a roadmap called RAMP-UP -Roadmap for research and innovation to industrialize AM of metals in Sweden was made [1], followed by a SIP Metallic Materials AM-call based on the conclusions [2]. This project, aims to summarize the stateof-the art of metal AM, evaluate the current status of the roadmap, and the effect of the funding. Furthermore, the updated most prioritized needs from industry in Sweden has been collected.

The forecasts for the metal AM market are still optimistic, even if a dip occurred in 2020. Compared to 2019, the size of the metal AM market is expected to double until 2025 and be five times the size in 2030. Significant steps have been taken the last years in several areas and many great examples of industrialization can be seen. In Sweden, some companies have products like powder, equipment, and AM components in production on high TRLlevels. However, widespread industrialization is taking longer time than expected.

Funding of metal AM research in Sweden from different agencies sums up to almost 600 MSEK for 2010-2020. Only in 2020, the funding was 160 MSEK. Additionally, inkind contributions from industry and other stakeholders are on approximately the same level. All RAMP-UP areas, that were identified in 2017, have been explored to different extent during the last years. Progress has been made regarding many of the RAMP-UP challenges, but more efforts are needed in all areas. The effect of the funding is expected to speed up the industrialization of metal AM in Sweden. In some soon to be finished SIP Metallic Material projects all companies answering a survey (6 of 9) plan to release new products within 0-5 years, supported by the project results.

According to the Swedish industry, these are the current areas of highest priority for national support:

- AM eco system development
- Quality assurance
- Industrialization efforts
- Powder, material, and process development
- Environment, health, and safety

Getting from a technology push to a market pull situation, building trust for the technology and among stakeholders along the value chain, is key to growth and prosperity.

Table of contents

Intro	duction		1	
1	State of	the art	1	
	1.1	Status of industrialization	1	
	1.1.1	Market expectations	1	
	1.1.2	Major events and challenges in the world influencing AM.	2	
	1.1.3	Industrialization	3	
	1.1.4	Industrialization in Sweden	6	
	1.1.5	Discussion around GAP between market expectations and i	ndustri	alization
			9	
	1.2	Status of research and innovation	11	
	1.2.1	Research internationally	11	
	1.2.2	Research in Sweden	13	
	1.3	Significant steps the last years	14	
	1.3.1	Manufacturing technologies	14	
	1.3.2	Material	15	
	1.3.3	Post treatment	17	
	1.3.4	Digitalization	18	
	1.3.5	Automation	20	
	1.3.6	Quality assurance and quality control	20	
	1.3.7	Standards	21	
2	Roadma	ıp status	23	
	2.1	Research projects and their contribution to the roadmap RA	MP-U	Р
			23	
	2.1.1	Research projects	23	
	2.1.2	Classification of the projects based on the RAMP-UP struct	ture	24
	2.1.3	Effect of the projects from the SIP MM metal AM call	25	
	2.1.4	Reflection on knowledge	26	
	2.2	Status for the challenges and research questions in RAMP-U	UP	26
	2.3	Status of the short- and long-term vision	27	
3	Researc	h needs for industrialization of metal AM	28	
	3.1	Research needs and priorities	28	
	3.2	Possible areas where efforts would make a difference	31	
	3.3	Suggestions for wider knowledge spreading	31	
	3.4	Updated version of the roadmap	31	
4	Conclus	ions	32	
5	Acknow	/ledgments	32	
6	Referen	ces	33	

Introduction

Metal additive manufacturing (AM) has great potential for certain applications and many good examples have been shown. Some products are already in production, globally as well as in Sweden, and the market forecasts show exponential growth the coming years. In 2016-2017, a roadmap called RAMP-UP - *Roadmap for research and innovation to industrialize AM of metals in Sweden* was made [1], followed by a SIP Metallic Materials AM-call based on the conclusions [2]. This project, aims to summarize the state-of-the art of metal AM, evaluate the current status of the roadmap, and the effect of the funding. Furthermore, the updated most prioritized needs from industry in Sweden have been collected. The project group carrying out the work in both RAMP-UP and FuRAM essentially consists of the business management group of "The Swedish Arena for AM of Metals" [3].

1 State of the art

The status of metal AM has been summarized in this chapter focusing on market expectations, major events and challenges in the world influencing AM, status of industrialization, status of research, and significant steps during the last years.

1.1 Status of industrialization

In this section the status of industrialization world-wide and in Sweden are summarized and compared to the market expectations.

1.1.1 Market expectations

The forecasts for AM industry are still confident; 3,5 times growth by 2026 compared to 12,8 billion USD in 2020 [4] is expected and there are similar high expectations by others [5] [6].

The metal AM market is valued at EUR 2.03 billion in 2020 with an expected Compound Annual Growth Rate (CAGR) of 29.2 % until 2025 [7]. There was a fall in metal AM market in 2020 but compared to 2019 the size of the market is expected to double until 2025 and be five times the size in 2030 according to IDTechEx in Figure 1 [8]. While the market predictions of 2017, which often forecast 50 or 100% growth in the coming four or five years, have been replaced by projections of 10-30 %. These predictions are still highly positive in the context of a global manufacturing industry which is preparing for a challenging future [9].

The technology that dominates the market for metal AM is powder bed fusion (PBF). There has been a decrease in sold metal PBF machines the last years, which has been a challenge for many suppliers, but the expectations for the future in Figure 2 are still optimistic [4] [7].

The fall and rise of the metal additive manufacturing market. Metal Additive Manufacturing 2020-2030

Figure 2 Metal PBF machines sales 2020-2025 [7]

1.1.2 Major events and challenges in the world influencing AM

The Covid-19 pandemic has had a negative impact also on the AM market, when maintaining existing production has been prioritized over the development of new technology and products. The pandemic has set focus on questions around self-sufficiency and local production, where AM could be an enabler. Additionally, this could lead to reduced transports with a positive effect on sustainability. A sustainable industry in general is a must, where AM can play an important role. Today's transformative society, with respect to industrial development, is governed by three important developments:

- The electrification of society and transports
- The digitalization of society and information handling
- The development of more sustainable society with sustainable industry

Overall, these developments have and will have significant impact on the development and applications of metal AM as well. Electrification will require different drive-line architecture with new types of components with different material properties, as they experience different load history during their lifetime [10]. Unique solutions and materials for energy storage applications (e.g., fuel cells, and batteries) can also be developed by AM [11] [12]. As AM is a novel technology, based on a digital file, it is well suited to develop digitalization solutions from the start. Subsequently, those solutions can be transferred to other areas. For sustainability, AM can contribute in many ways like better material utilization, local production, produce on demand, etc.

1.1.3 Industrialization

Examples of industrialization of metal AM are found in a number of applications in different branches, see Figure 3, but so far wide industrialization is not there yet. This is noted by the powder producers, who have made investments into capacities both in Sweden and elsewhere but are still waiting for the powder volumes for AM to reach the published market forecasts. One indicator of the degree of industrialization and the maturity of a technology is the system utilization. According to AM Power, only a few industries have adopted metal AM for a wide range of products and achieved near full-time production [13]. Researchers at MIT suggest that the implementation of AM remains constrained by the technology's maturity and the skills of the corresponding workforce. They also suggest that the fundamental economics of AM, at present, generally constrain its use cases – especially in volume – to those where the manufacturer can afford a cost premium for AM [14].

Figure 3 Shares of system sales revenue by industry 2020 [7]

Below follows a summary of the status of industrialization for some main business sectors. The medical sector was one of the first areas for industrialization and is today well established in the use of metal AM for medical and dental implants [15]. Hundreds of thousands of patients have received metal AM hip implants, beneficial for osseointegration (the fusion of bone and

implant) [14]. Industrial applications of metal AM are also orthoses, protheses, and medical instruments and equipment [16].

Aerospace industry was also one of the early adopters, but as certification times are long, few critical components are on the market [17] [18]. There are a number of components where lightweight is utilized connected to interior design and AM helps to assist production activities (through prototyping, tool production) [14]. In Europe, one example of advanced application of metal AM in aerospace is the GE Avio Aero plant where EBM is used for manufacturing TiAl-blades, claimed to be made in volume production [19]. Products for space applications, e.g., products for satellites and rockets, are manufactured and both ESA and NASA have identified AM as a main technology area. Relativity Space are aiming to build rockets in 60 days using a large self-made DED-printer [20].

In the automotive sector, electromobility develops faster than expected and will change the manufacturing demand which might be an advantage for metal AM. Today, metal AM components can be found within racing and high-end vehicles. For aftermarket, small series, niche products, and prototypes, metal AM can be interesting for automotive in general [14]. For larger series, metal AM is not a feasible manufacturing method due to cost according to a panel discussion at Formnext 2020 [21]. However, the development of sinter-based AM technologies may constitute a game changer as these are potentially more fit for mass production than PBF and DED, but with other limitations, see Figure 6. Indirect AM, i.e., printing a mold in sand and cast complex parts, is also attractive for automotive. General Motors (GM) has announced the opening of an Additive Industrialization Center, a new 1,400 m² facility dedicated to AM for the automotive industry [22].

A break suspension link was the first AM safety-relevant part that has been approved (by TÜV SÜD Rail GmbH) for the railway sector in 2019 [23]. The work group "RAILability" consists of major European railway companies, SJ, DB, SNCF, Trenitalia and ÖBB and AM enterprises such as e.g. BeAM, ExOne, and EOS to cooperate in order to accelerate the implementation of AM in the rail industry [24] [25]. So far, metal AM is mainly being used for spare parts and reparations.

In the energy industry, Siemens Energy in Sweden is a good example of industrialization internationally, using metal AM for both manufacture and repair of components, see Figure 4 [26]. It is also explored within the oil and gas industry, even if the industrialization is progressing slower [27].

At Formnext 2020, the status and challenges for the general manufacturing industry were discussed as well and are well in-line with input from Swedish stakeholders given later in this report [28].

Figure 4 Production of more than 1000 gas turbine swirlers per year with qualified industrial production process at Siemens Energy [26]. Picture curtesy Siemens Energy.

Figure 5 Technology maturity index plotted against Industrialization index [29]

Different AM technologies have also reached different level of maturity and industrialization, see Figure 5. In this plot, PBF-LB is seen as a metal AM solution that has reached maturity with regards to both technology and industrialization. Since 2017, AM solutions like PBF-LB, PBF-EB and powder laser deposition have matured, and we have seen more widespread adoption and industrialization. There are several new AM technologies that have not yet reached high index on either industrialization or technology maturity. However, they might

come with higher productivity and lower system price that could support the market predictions for the coming years, see Figure 6. It is therefore important that there is continuous research in Sweden on new additive technologies that potentially could disrupt the ones we know of today and increase adoption even further. The most interesting ones around the corner is binder jetting (BJ) and different types of directed energy deposition technologies (DED), but the future disruptive AM technologies are probably not invented yet.

Figure 6 Comparison of part performance, cost and lot size for different metal AM processes [30]

1.1.4 Industrialization in Sweden

Traditionally, Sweden is a world leading supplier of metal powders where Höganäs, Sandvik, Erasteel, Uddeholm, and Carpenter Powder Products have commercialized powder for AM. New players are entering the market as powder producers, e.g., SSAB [31], Gränges [32], and Outokumpu [33]. Arcam (part of GE Additive), Digital Metal (part of Höganäs), and Permanova Lasersystem develop and sell AM-equipment for industrial production. In addition, Freemelt develops and sells AM-equipment for research, e.g., process- and material development. Quintus Technologies and Linde support the value chain with equipment for hot isostatic pressing and gas solutions, respectively. Components are manufactured in small series in Sweden, e.g., at Siemens Energy, Sandvik, GKN Aerospace (see Figure 7), Digital Metal, VBN Components, and Cytiva. Additionally, 3DMetPrint, Lasertech (now part of XANO

Group), AIM Sweden, and AMEXCI are also offering printing services for both prototypes and industrial components. Several end-users have components for different applications under development, using in-house or external printing resources, and some products are already industrialized. AM of novel materials like amorphous materials by Exmet Amorphous Technology are brought towards industrialization together with automotive industry in Sweden [34] [35]. A new small company is Procada, offering engineering services and customized process control solutions needed to achieve reliability, robustness, and repeatability in DED processes.

The activities around non-destructive quality control and inspection, for AM at the inspection service providers in Sweden, are still few. This possibly indicates that those that print today and require inspection, do this in-house with their own workforce, and/or do not print that much for production but rather for prototyping.

Figure 7 Pratt & Whitney aeroengine PW1500G/PW1900G with fan case mount ring manufactured by DED-LB/wire by GKN Aerospace [36]. Picture curtesy GKN Aerospace

A survey was sent to companies in Sweden with interest, activities and/or products within metal AM. The survey was spread through different channels; The Swedish Arena for AM of Metals, Vinnova competence center CAM2 and AM4Life, SIP Metallic Material conference, AMEXCI and personal contacts. 25 companies answered the survey, and they can be grouped according to Table 1.

Table 1 Companies answering the survey

Powder	Special material & process	Manufacturing	Equipment	Enduser	Support
7*	2	3	4**	8***	1

* *1 with own AM-production and applications*

** 1 with own AM-production

*** 3 with own AM-production

One question was to estimate at what technology readiness level (TRL) [37] their companies are at regarding metal AM and to specify which products it refers to. The question allowed a company to answer for several products on different TRLs. The TRL refers to powder, component, equipment, material, AM-process, post treatment, and design tool. The product with the highest TRL-level for each company was plotted in Figure 8. All answers regarding TRL are shown in Figure 9. The companies also described their achievements in the last years in more detail clearly demonstrating that great progress has been made regarding implementation of metal AM and developing and releasing new products. The same estimation was not made in 2017 and hence, it is difficult to quantify the advancement and difference in TRL with time.

Figure 8 Product with highest TRL at each company answering the survey.

Figure 9 All answers regarding TRL from the survey. A company can have products on different TRL.

1.1.5 Discussion around GAP between market expectations and industrialization

For metal AM adoption, there is a gap between the high expectations from the market and the actual speed of industrialization. This is despite all significant steps taken for the technology the last years. Companies initiating metal AM production typically meet industrialization challenges with repeatability, part quality and productivity. Repeatability challenges in metal AM exists within one build, as part to part variation. It can also occur as build to build variation and machine to machine variation. For a part produced by one machine in a specific build, at a specific position, with a certain powder lot, to be same as another part produced by a different machine requires a robust system and a very good understanding of the critical process parameters. To achieve consistent part quality a quality management system is required with an establishes solid quality control plan with inspection intervals of the critical parameters. To decide on metal AM production, the parts coming out must not only meet the quality requirement. In order to be cost competitive compared to other methods, metal AM must also be productive. The productivity of a metal AM system is set by its design such as, number of lasers, build envelope size, recoating time and more. But system productivity is also depending on part design and the AM process parameters. If a part design is made lighter, less material is to be melted and productivity increases. The metal AM process parameters can be adjusted and optimized to productivity. But for all process parameters there is an operating window in which good part quality is achieved. There is always a trade-off between part quality and productivity, where good understanding of the overall manufacturing process is needed in order to reach balance and meet the need of all stakeholders. A company with series production of metal AM parts needs to control critical parameters and comply with both specific industry requirements and available AM standards. In recent years, several standards have been published that are available to enable adoption of the technology and allow suppliers and end-users to industrialize new AM applications faster, see section 1.3.7.

The market is expecting systems suppliers to increase productivity, robustness, build size and automation while lowering system price and maintaining good material properties, see Figure 10. AM metal powder suppliers are expected to lower price and widen their material portfolio.

Figure 10 Cost of metal AM [38]

Strong drivers for selecting a manufacturing method are established supply chains and low cost of manufacturing. Manufacturers that consider metal AM and only look for replacing one method with another will often find metal AM to be more expensive only looking at the cost of manufacturing. To find the benefits of AM a company must be able to value other things, e.g. an increase of part performance, or see value in customization and a possible supply chain simplification, or the possibility to facilitate circular economy by using AM as a repair process, and so on. This makes part production a complex business strategy and the part life cycle cost must be considered [14]. How to model the part life cycle cost is a complex process and one of the main barriers in metal AM adoption.

If the AM market predictions are to be realized, a lot more companies have to find a way to assess the benefits and come to the conclusion that AM will offer a better overall total life cycle cost. Systems will likely become more productive and cheaper, and when adoption increases, powder price will decrease. To support this change, part life cycle cost models and guides specific for AM need to be developed to find the right business case and support the decision process for AM. Design for AM is an important key for the innovation process to create successful business AM cases. The design space for AM can be structured into three levels, i) Direct part replacement, ii) Adapt for AM, iii) Design for AM [39]. Design for AM includes, e.g., the ability to integrate functionality into one component, optimize use of material, reduce time needed in AM machines, and design to minimize support structures and post-processing.

A challenge in a Swedish context is to support the existing AM supply chain. This is not limited to powder manufacturing or printing capabilities but must also include post processing and quality assurance and control of additively manufactured or repaired parts. When an end-user designer considers not only manufacturing cost but also do the part life cycle assessment, AM will more often be the way forward. A designer must know that there is a strong supply chain and feel confident that AM path is feasible to not choose a proven established manufacturing method, despite potential upside with the AM path. Just as when there is a handover from a metal AM design engineer to the procurement department, there must be an established and healthy supply chain that understand the purchaser and can meet the industry requirements and complies to AM standards and certification.

Industrialization of AM is a journey a company does on its own and once done, it is not something you willingly share with others. There is a lot of time, money, complex decisions, and competence developed in this process. For the companies that can manage and afford this it is a strong factor of competitiveness. There is a need to develop guides and templates for work instructions, operating procedures, product and process validation and control plans for companies to know how to comply to standards and industry requirements, using AM.

1.2 Status of research and innovation

Status of research and innovation within metal AM, internationally and in Sweden, is described in this section.

1.2.1 Research internationally

It is difficult to find a comprehensive review of the status of international research in metal AM as it continuously expanding. What is clear though is that the level of research activities is maintained at a high-level, taking presence of AM as core topic on international conferences as well as its share with respect to other topics at such conferences. AM is a common core topic on international conferences [40] [41] [42] [43] [44] [45] as well as dedicated metal AM conferences [46] [47] [48]. For Euromat 2019, AM was the second largest topic after advanced steel with 118 and 127 accepted abstracts, respectively [40]. For Euromat 2021, AM is the largest topic and attracted the largest number of 102 accepted abstracts [49].

Scientific results in AM and hence research activities are continuously increasing. This refers not only to the increased volume of publications, see Figure 11, but also to overall impact and scientific level. AM journals attract high quality contributions with high impact factors, for example focus journals like Additive Manufacturing (Elsevier) has latest CiteScore factor of about 11.8 and Progress in Additive Manufacturing (Springer) has CiteScore factor of about 3.9 [50]. Further examples are high impact materials processing/materials design/material technology journals including articles on additive manufacturing such as Journal of Materials Processing Technology, Materials Design, Scripta Materialia, Applied Surface Science and Materials Science and Engineering. Overall, the CiteScore factor of Additive Manufacturing has increased from about 7.2 in 2017 to above quoted 11.8 in 2020, illustrating the overall significant development in the field. This is close to or overpassing the impact factors of classical journals in material science and metallurgy.

The topic of metal AM was taken up by several contributions in Nature Communications during recent years, including number of progresses across the whole field of AM with some highly cited examples of novel approaches in metal additive manufacturing [51] [52] [53] [54] [55] [56].

Figure 11 Results from searching for publications on Additive Manufacturing and Metal in ScienceDirect [57]. The number of publications is increasing every year and was all time high in 2020.

There are several active research centers in Europe, US, Asia and Australia. Many of them launched several years ago and are now progressing. To illustrate this, a few from different parts of the world are selected and some facts are summarized in Appendix 1. These few examples testify the active and significant R&D on the international scene and in many aspects the strong alignment with the activities in Sweden as identified via both the RAMP-UP and FuRAM projects. One important remark is that the research focus in international centres cover materials, hardware and process development, with many mostly focusing on material properties and performance assessment. Recent research trends focusing on AM integration across the value chain, development of technologies and knowledge in process monitoring, analytics and data treatment constitute new research direction for a number of the mentioned centres.

The centres presented in Appendix 1 have different size and differs significantly by the funding basis, many of which are supported through prioritized funding initiatives on national level, strong industrial funding and/or donations.

To this should be added number of company-hosted R&D centres. In Finland, EOS has its hub for materials and process development. To mention some important ones in Germany, the BMW Group Additive Manufacturing Campus, Munich/Oberschliessheim claimed to provide output >300,000 parts in metal and plastic [58]. There is also the Voestalpine AM-center in Düsseldorf with PBF-LB machines and areas of services [59]. Linde has its Linde Global Development Center for Additive Manufacturing in Munich with focus on technology development and customer support on powder for AM, AM process and post-processing development [60].

One way to measure innovation is the number of applications for patents. A search in the patent database Espacenet on the words *Additive Manufacturing* and *Metal* gave the diagram shown in Figure 12. In total, almost 1 million patents were published, and a peak can be seen in 2017.

Figure 12 Result from Espacenet patent search on the words Additive Manufacturing and Metal [61]. The red curve shows patents per year and the black curve shows the accumulated number of patents.

1.2.2 Research in Sweden

Two Vinnova competence centers are now active; CAM2 (Competence Centre for AM-Metal, started 2017) [62] and AM4Life (AM for the Life Sciences, started 2020) [63], hosted by Chalmers University and Uppsala university, respectively. In addition, there is a strong established academic network in Sweden with more than dozen universities and research institutes actively involved in research in different aspects of metal AM, including Chalmers University of Technology, Dalarna University, Karlstad University, KTH, Linköping University, Luleå University of Technology, Lund University, Mid Sweden University, Jönköping University, Rise, Stockholm University, Swerim, University West, Uppsala University, Örebro University. Network with industry and academia interaction within metal AM are, e.g., The Swedish Arena for AM of Metals [3], TO80 at Jernkontoret [64], SIS TK563 [65], as well as many regional initiatives.

Most of the metal AM related research in Sweden is focused on material and AM process development and on advanced component characterization. A number of developments of AM-research has also been realized like new/improved materials (Ni, Al, steel), production speed increase (75% decrease of build time), new methods for assessing water content of powder, method for assessing argon content of powder, etc.

More than 50 PhD-students within metal AM started at different Swedish universities around year 2017 and many of them have now defended their dissertation or are just about to do so. New PhD-students are following, and the number of publications is increasing accordingly.

The number of AM-machines for research are increasing, the current number at universities and institutes accounts to at least 19 PBF machines (whereof 13 PBF-LB and 6 PBF-EB), as well as about 6 DED setups and one BJ in addition. Furthermore, a number of decisions for future investments are taken. Considering that the capacities cover different brands and different

machine sizes, from smaller machines to real production machines, there is a comprehensive infrastructure on a national basis.

1.3 Significant steps the last years

Significant development can be seen in all areas the last years and are described below for manufacturing technologies, materials, post treatment, digitalization, automation, quality assurance and quality control, and standards. In most areas the development are based on incremental improvements rather than groundbreaking steps.

1.3.1 Manufacturing technologies

Metal AM has so far been based on number of core technologies, namely laser beam powder bed fusion (PBF-LB), electron beam powder bed fusion (PBF-EB), directed energy deposition (DED), and binder jetting (BJ). In addition, there is continued development of the AM technologies, e.g., development where metal powder is introduced into the polymer matrix filament used in material extrusion (fused deposition modelling) as shown by BASF based on their MIM compound [66], as well as introduced in the photopolymer bath used in the process VAT photopolymerization [67]. In both cases, final sintering is required as the material extrusion or VAT photopolymerization only represent the forming stage. Considering the whole field of sinter-based technologies including binder jetting, there is a lot of novel approaches along the line of two stage processes [68]. The main potential benefit with these technologies is that they are much more suited for mass providing hardware and manufacturing solutions include Digital Metal, Exone, Markforged, Desktop Metal amongst others. However, the powder requirements are different as the same powder cannot be used for any sintered-based technology like binder jetting as for PBF-LB or PBF-EB.

In case of PBF-LB, the development focuses on increased productivity. New machines with multiple lasers (up to 12!) and advanced controls are introduced to the market, see e.g. [69] [70] [71]. Today, there are several examples of successful printing with layer thicknesses of 80-100 μ m by using the same hardware compared to standard layers thicknesses of 20-40 μ m some years ago. This alone constitutes an increased production rate of 2-4 times. In case of PBF-EB, novel hardware is launched from GE Additive (Arcam) and open-source solutions are provided by Freemelt, both companies based in Sweden. Recently, many new equipment suppliers of PBF-EB worldwide made a commercial entrance, including Jeol [72], Wayland [73], and others listed in Figure 13. Hardware solutions like LB₆ filaments are the standard choice rather than W filaments, which means significantly increased brightness and filament lifetime. Hence, the equipment manufacturers have continued to boost the technological capabilities in all powder bed technologies.

There is also a drive for DED development as it provides an important means of much higher production rate than the powder-bed technologies, as well as it is well suited for repair. The DED solutions can, e.g., be combined with flexible 5-axis solutions with capability of reorienting the part to keep deposition control while building [75]. Considering DED, this solution also means that hybrid technologies are facilitated by equipment suppliers [76].

For mass production of small precision metallic parts, the development of material jetting constitutes a special development [77]. It is a technology in which nanoparticles are dispersed in liquid which jetted, with numerous of inkjet nozzles, onto a tray to fabricate numerous of

parts in parallel, followed by support removal and final sintering. Continuing to the micro scale, electrochemical deposition is another process to keep an eye of for the future [78].

There is also significant progress in hybrid technologies such as 3D sand printing (3DSP), in which sand printing is used for creating a mold for metal casting [79] [80]. Alternatively, polymer printing has been applied to produce the ceramic mold which in turn was used for investment casting. The driving force for applying these indirect methods comes from the need to develop and fabricate more complex shapes and lightweight, which in turn also is a driving force given the direct fabrication via metal AM itself. Important benefits with e.g. 3DSP are large part size capacities, combined with light-weight design and potentially attractive cost breakdown. There are about 13 vendors for 3DSP equipment, with ExOne and Voxeljet being the leading ones [4].

Metal Additive Manufacturing technology landscape

Figure 13 Metal AM technologies and suppliers [74]

1.3.2 Material

In recent years, the number of alloys commercially available as AM feedstock has increased notably compared to the 16 alloy systems (12 for PBF-LB and 4 for PBF-EB) available in 2017 [81]. The equipment suppliers provide around 30 alloy systems according to their webpages although it is not clear whether they all come with developed process parameter recipes for any part geometry or if modification will be needed from case to case. In addition, almost all metal powder producers already offer e.g. [82] [83] [84] [85] [86] [87] [88], or will offer e.g. [31] [89] [32] customized powders for AM to meet the customers' specific individual requirements.

In Table 2, alloy powders commercially available for AM are listed and the number of alloys is now >50. The alloys in Table X are not new AM alloys but were designed for thermomechanical processing histories typical for traditional manufacturing methods.

Туре	Fe	Ni	Ti	Со	Al	Cu	Misc.
Commercial	316L 4140LS 4340LS 420SS 431SS 347SS 347SS 347SS 17-4PH 15-5PH H13 Invar	C-276 Waspalloy IN 625 Hastallay-X Haynes 282 IN 718 IN 738 CM247LC René 80 Monel K- 500	Ti6Al4V (different grades) Ti 4822 Ti 6242	CoCr CoCrMo CoCrW Haynes 188	AlSi10Mg AA2319 A205 F357 6061 4047	CuSn10 C-18150 Pure Cu GlidCop GRCCop42 GRCCop84	W Au Nb Ag Pt C-103 Ta
Research and development	Steel- MMC	Ni-MMC Single crystal alloys (René N5, CMSX- 4)	B-Ti alloys Ti-Nb	SB- CoNi-10	Al-Cr-X Al-Mg-Sc (Scalmalloy) Al-MMC		High entropy alloys (multi- principal alloys)

Table 2 Summary of common alloy systems currently available for AM

The number of alloys designed specifically to take full advantage of the AM process conditions is still limited but some new alloy systems, specifically designed for AM are emerging, and have reached different TRL levels. For example, VBN Components has developed a new group of wear and heat resistant AM alloys (Vibenite®) for the PBF-EB process, and the company Exmet Amorphous Technology has expanded further through success of printing amorphous materials for various applications, e.g., electrical motors and electromagnetic components, using PBF-LB.

The availability of AM material feedstock for AM processes other than PBF-LB and PBF-EB has also increased since the 2017 RAMP-UP State-of-the art-report [81], in particular for the binder jetting process where, e.g., both Digital Metal and ExOne now offer several materials solutions. This includes several steels, Ni-base alloys and metal composites (steel/bronze or Tungsten/bronze) as well as pure Cu which is one of Digital Metals' latest materials release, see Figure 14 [90].

Figure 14 Bullhorn antenna made in pure copper by Digital Metal. Picture curtesy Digital Metal

Several alloying techniques to modify the powder to affect the microstructure evolution during printing of certain material systems have been demonstrated through academic research, see e.g. [91] [92] [93]. The industrialization of these alloying techniques and subsequent new materials will take some time although for, e.g., Al alloys, printable versions are already commercially available [94].

Integrated computational materials engineering (ICME) is now used also for material development for AM (see e.g., [95]). Intellegens.ai is offering machine learning for material and process development for AM based on knowledge from Cambridge University [96]. Oerlikon acquired Scoperta in 2017 and is offering a big data analytical software to design new materials including AM-materials [97]. Data handling is important for all predictions and NIST has built an AM materials database using the NIST Configurational Data Curation System [98]. The Swedish Arena for AM of Metals has started to collect data in research projects and for PhD-work based on the same system which is available to the Arena members. Find more about digitalization in section 1.3.4.

1.3.3 Post treatment

New technologies to improve the surface finish of AM-components have been developed [99], [100]. The processes are often combinations of chemical and mechanical surface finishing and polishing technologies and the exact procedure is the proprietary know-how of the company offering the technology. Some of the technologies also aim to clean channels from powder and remove support from inaccessible places, as well as improve the surface finish in channels and of complex features [101].

To design the support structures for easy removal is one way to reduce the need for timeconsuming post treatment. New support free AM processes have been developed, e.g. by Velo3D [102], [103].

For critical applications, both hot isostatic pressing (HIP) cycles and heat treatments have been optimized specifically for AM materials [104] [105].

1.3.4 Digitalization

A technology roadmap for Digitalization in AM product creation chains, was presented in 2017 from the DINA pilot project "Digitized production flow", part of the Vinnova's government mission to promote digitalization in Swedish Industry [106].

Since then, specific emphasis on digitalization and AM is made in three R&D testbed projects funded by SIP Produktion2030: DiLAM, DiSAM [107], and DiDAM. The digital processing from three levels will be described in an ongoing preparation of a "Digital Model Guide for AM" in Figure 15, based on several use cases in different materials made by different AM methods and combinations of them.

Three levels of views on digital processing

Figure 15 The three levels of views are applied in the AM use cases, to create a generic digital model guide for AM, ongoing work by Ola Isaksson, Chalmers, in P2030-project DiSAM.

The business process, illustrating the product creation flow in an overview AM product life cycle, is presented in Figure 16.

Figure 16 An overview of the business process steps, connected between each other by digitalization and material flow.

Digitalization within metal AM is developed by continuous improvements rather than groundbreaking steps during the last years. The RAMP-UP roadmap identified gaps in the digital flow between different steps, and such gaps can still be identified. Large actors in the AM market, have the ambition to cover a seamless flow through all steps and in all moments through the AM product creation steps. This means a continuous and intense work to refine, improve and integrate the digital information processing in all single steps. This, by using a combination of AM, big data handling, and artificial intelligence, e.g., machine learning. A specific quality improvement step in the digital information from design CAD to AM machines, is proposed, by replacing the current STL file format with a new AM file format. Examples of

new formats are AMF (Additive Manufacturing File Format) and 3MF (3D Manufacturing Format) [39].

In parallel, there is a need to implement more basic functionalities, sensors etc in AM machines. To identify, understand and describe the digitalization that the future R&D needs, the digitalization stair in Figure 17 can be used as a tool.

Figure 17 The digitalization stair, a model presenting how data can be used in different technology steps. Adapted from Industry 4.0 Maturity index by Sandra Mattsson, RISE.

The models in Figure 15 and Figure 17 can be used in the process of describing and understanding the current state of digitalization and the future needs from three perspectives:

- 1. The product creation steps from innovative ideas to realized components or products
- 2. The metal AM processes and machines: How to optimize AM for metal manufacturing.
- 3. The industrial metal AM production through the whole supply chain

Industrial digitalization needs a transparent, quality assured information flow in an enterprise functionality like ERP (Enterprise Resource Planning) – MES (Manufacturing Execution System) – SCADA (Supervisory Control And Data Acquisition) – PLC (Programmable Logic Controller) – I/O (Input/Output communication). In such "system of system", new AM material properties, improved process and machine capabilities, also needs updated digital representation.

The connected society, factories and machines, are vulnerable for cyber-attacks, as well as misused information and misused intellectual properties (IP). An example of misused IP can be illegal AM of spare parts. The DiSAM project has introduced a specific use-case on IP and involved international software vendors to create a functional system in a supply chain. The data format used for the industrial design IP where STEP AP242. One of the addressed workflows had the following actors and simulated roles for the investigation; Epiroc – OEM, RISE IVF – AM Print house, Brogren Industries – Post process service provider & Swerim – Process simulation consultancy. The challenging part for protection of data is not the encryption of data, but how to unlock access in a controlled and convenient manner. The importance of the topic is illustrated e g by a new national innovation node for cyber security [108] and applications like VINNOVA's "Cybersecurity for advanced industrial digitalization" [109].

1.3.5 Automation

Automated pilot systems from feedstock to produced product have been developed in e.g. the NextGenAM project (Premium AEROTEC, Daimler and EOS) [110] and the Hyprocell project (H2020) [111]. However, implementation of the systems is challenged by high investment cost. A full pilot line workflow optimization and automation using industrial robot technology and auto guided vehicles is established at RISE IVF within the MANUELA project (H2020), where Chalmers is the project coordinator [112]. Additive Industries released MetalFAB-600 in 2021, with more automation than their previous systems.

Systems for automation of parts of the process chain are on the market, but they are often not connected to other process steps. Loading and unloading of the build module, cut component from build plate, powder removal, and integrated chuck solutions for post processing are some examples. ExOne just introduced an automated guided vehicle to move the 700 kg heavy building box between the stations in their binder jet process.

If successful, automation would be beneficial for cost per part, work environment and repeatability. Still, the number of applications that needs automation today is small, but with development of automation more application will be feasible with AM [113].

1.3.6 Quality assurance and quality control

Quality assurance (QA) and quality control (QC) are broad but important areas for successful industrial implementation. The areas include process monitoring and process control, process stability, and non-destructive testing (NDT). Essentially, they deal with how to assure and control different aspects of quality, e.g., dimensional accuracy, surface conditions, mechanical properties, and material defect presence. The feedstock quality will also influence the performance of a component. It is possible to print, and to bring to market, high quality metal parts. However, QA and QC are still difficult, and to make high quality parts in a reproducible and cost-effective manner is still challenging [114]. In recent years, incremental improvements in quality assurance can be identified rather than single groundbreaking advances. An increasing amount of on-line process monitoring solutions is offered by the equipment providers and a number of international research developments are summarized below.

To correlate the measured powder properties to the processing in different AM technologies and to the final properties of a component is still a challenge, despite new guidelines [115]. Many methods to measure spreadability are under development [116].

The control of the build environment and the characteristics of the built part during the process is still an active research field. Within monitoring of the built part characteristics there has been a trend to add sensor and methods to detect imperfections and characterize also the sub-surface material; to complement the sensors for layer-by-layer surface conditions monitoring, already present in the commercial AM systems. The vision systems already implemented also include infrared and near infrared radiation detection, sensitive to both surface and surface close imperfections. One example of this for PBF-LB is the EOSTATE system for on-line monitoring that takes advantage of the laser-powder interaction to produce melt pool monitoring and optical tomography of layers as part is built [117]. Other AM system manufacturers have similar solutions. This technology allows to depict hot spots and number of event-based phenomena like, e.g., spatter formation responsible for potential defect formation. Still, the challenge is to connect the events to the physics of the process and to implement feedback loops with the aid if ML/AI routines [118].

Furthermore, additional sensors have been considered lately. Examples of such novel (for the AM application) sensor approaches recently explored are acoustic emission, where one listens to how the material state changes during the process, e.g., crack formation sounds, as for PBF-LB in [119]; and detection of backscattered electrons in PBF-EB setups [120]. Here, Friedrich-Alexander University in Erlangen has developed and implemented the so-called ELO (electron optical imaging), whereby layerwise feedback looping is possible to tune and accommodate the build parameter settings [121]. In 2016, Arcam released their add-on xQam, which is a novel built-in X-ray (rather than electron) detection system, currently utilized for auto-calibration of the system, but which could potentially be utilized also for material characterization.

Probably more important for the overarching goal of increased industrialization of AM, are the studies on how to transfer the data into reliable information about the actual build quality. This is still an active research question. For example, studies are exploring how to connect in-situ data to fatigue properties [122] and other mechanical properties [123], as well as possibly try to utilize it in qualification [124].

A recent advance within NDT for AM, especially with regard to industrialization, is the 2020 release of the ASTM guidelines for NDT of AM parts used in aerospace applications [125]. Even though it is essentially an overview of the NDT methods suitable, and a list of relevant AM (DED/PBF) material imperfections, and many questions are still open, it is an important milestone for the community. In addition, a similar guideline standard for NDT of AM parts is also being prepared in the joint ASTM/ISO working group and is probably going to be release in 2021. In general, several working groups are active within topics related to quality assurance and quality control and many new standards can be expected [126].

Among the different NDT methods X-ray computed tomography (XCT) is still dominating among the published studies. Apart from its predicted suitability for inspection of complex part geometries, the interest has been high also probably since it, with overall success, can be utilized for material characterization on small destructively cut-up samples. Studies on resonance testing has also shown progress during the last years. Both of these methods have been highlighted in the emerging standards and other reviews on NDT for AM. Although XCT is emphasized in this AM context it is important to remember that as with all X-ray absorption based imaging methods, it is a challenge to detect with confidence small contrasting material imperfections, with similar density as the base material, in large high density parts. However, one of the overall drives for implementing AM is the possibility to manufacture light weight parts, a drive which would then potentially on an overarching perspective counteract some of these fundamental XCT limitations.

Between process and in-situ monitoring and post-build inspection, where powerful inspection methods are envisioned to be included into the AM machines, lies the concept of in-process non-destructive evaluation (NDE). In connection to this concept, e.g., non-contact laser ultrasound has also seen an increase in interest for this application.

The issue with resource intensive NDT procedure derivation for the specific application at hand (all of them are highly dependent on what to detect (defects) and characterize and in what (part geometry and so on)) has been given little attention and no significant progress on this challenge has been reported.

1.3.7 Standards

The activity concerning development of standards is currently high and is following the AM standardization framework in Figure 18. It is developed and approved by ASTM F42/ISO TC261, who jointly are the major actors in this field. In spring 2020, a summary was made of

published standards and those under development related to metal AM [127]. The need from Swedish industry was also collected. SIS TK563 participated in the work and will continue working to support the interests, based on active involvement from industry [65].

For continued updates of standards, published and under development, the following sites are recommended:

- ISO search link [128]
- ASTM F42, divided into different areas [129]

Many general AM standards are now existing and the work with specific standards regarding material, process, and applications is ongoing, generating new standards every year. From ASTM/ISO, two application specific standards have been published for aerospace and one is under development. For medical applications two standards are under development and for automotive and transportation and heavy equipment industries one each [129]. Besides the joint work from ASTM/ISO other standardization organizations are active. For example, application specific standards are also available from SAE; approximately 60 standards, published or under development, for aerospace [130]. Another example is the new DNV guideline for AM of metallic parts for oil and gas industry [131].

Figure 18 AM standardization framework, developed and approved by ASTM F42/ISO TC261 [132].

America Makes and the American National Standards Institute (ANSI) published their Standardization Roadmap for AM (Version 2.0) in June 2018. The roadmap described the AM standardization landscape and identified 93 "gaps" where no published standard or specification existed to address industrial needs. In 65 of the gaps, additional pre-standardization research and development needs were identified. The focus of the roadmap is the industrial market, especially for aerospace, defence, and medical applications. In 2021, a progress report was published that describes the progress to address the gaps identified and described in the roadmap [133]. The gaps progress report was compiled based on inputs from standard developing organizations, subject matter experts, alert mechanisms, and independent research. It lists newly

published standards and new standards projects, alongside suggestions for future roadmap modifications. The report is not a consensus document but rather intended to serve as an interim "living document" that will be maintained and periodically re-published until that the next version of the standardization roadmap is available.

2 Roadmap status

In 2016-2017, a roadmap called RAMP-UP - *Roadmap for research and innovation to industrialize AM of metals in Sweden* was made [1], followed by a SIP Metallic Materials AM-call based on the conclusions [2]. Part of the roadmap is enclosed in Appendix 2. A first attempt to evaluate the status of the roadmap is made here.

2.1 Research projects and their contribution to the roadmap RAMP-UP

National research activities contributing to the roadmap RAMP-UP have been collected and some effects described.

2.1.1 Research projects

Contributions to metal AM R & D projects including sand molds for metal casting granted in the period of 2010 - 2020 have been summarized in Figure 19 and Figure 20 by collecting information from 10 financiers. A few projects were also granted earlier and are not included in this study [134]. The funded period varies and today there are projects funded until 2027. The total contribution to Swedish academia and/or industry for the period is in the order of 955 MSEK and covers approximately 220 projects listed in Appendix 3. More information about the different projects can often be found in the SweCRIS database [135] and sometimes at the webpages of the funding agencies. Compared with the amount granted until 2018, the contribution for the 2 last years is almost 400 MSEK for 100 new projects. The value of the industrial partners in-kind contribution and/or partners own contributions are not included. There might be some missed projects. Probably, there has been metal AM activities as minor parts in, for example, Triple Steelix (from January 2021 Sustainable Steel Region) and the Vanguard initiative which are not covered. Vinnova is the largest financier followed by Knowledge Foundation (KK), EU-projects and Regional funded projects including ERUF. These five financing bodies cover more than 90% of the total volume. The contribution per year is based on information from the financiers. In case that detailed information was absent the total fund was evenly divided for the given project period.

Figure 19 Funding for Metal AM 2010-2027

Figure 20 Funding for metal AM 2010-2027. Contribution per year for the project period.

2.1.2 Classification of the projects based on the RAMP-UP structure

The 220 funded projects have been classified based on the RAMP-UP structure in Figure 21. In addition to the seven RAMP-UP areas two new, Centra and Overall, were added. Projects classified as Overall usually contain pre-studies aiming at establishing national or regional test bed facilities and similar types of technical centra, where academia and industry work together.

Those projects are often funded by regional programs coordinated from the Swedish Agency for Economical and regional Growth. One project often relates to more than one area and the classification is based on the main challenge of the project, assessed by the FuRAM project group. Thus, the numbers should only be seen as rough approximations, and the volume of funding is also not reflected. Looking at the number of projects, almost half of the projects are within the areas "Production" and "Process stability and Product Quality". This is followed by "Material" and "Part and system design".

Figure 21 The projects grouped according to the RAMP-UP classification.

2.1.3 Effect of the projects from the SIP MM metal AM call

Nine projects were funded in the SIP Metallic Materials metal AM call 2018, based on the challenges with highest priorities from the RAMP-UP-project [2]. The industrial partners in all of these projects were asked about the effect of the projects and input was given from six of the projects (ADROAM, AMLIGHT, Amorph, DEMA, MiAMI, Sandbox). These projects mainly address challenges around material, process stability and product quality. All agree that the projects have contributed to progress around those challenges, but the challenges have not been entirely resolved yet. More knowledge and understanding have been achieved which both facilitates and motivates further development, as well as allows for prediction of key challenges.

Industrialization from all projects is expected within 0-5 years and the products are new powder materials, components, and input to software. The next step is verification and more evaluation in end-user applications. The development needs to be iterative based on the performance of AM-products in end-user applications. Increased productivity and lower cost would in some cases be needed to motivate the business cases. Post treatment for corrosion protection was mentioned as a missing process step to be developed for one product. One challenge for the last part of the industrialization is lack of internal time and resources, another is to involve additional partners to cover the whole value chain. Furthermore, technical challenges like simulation, process understanding, reproducibility and scaling are highlighted.

In general, it is a challenge to find applications with sufficient customer value to use AM. AM as a production method is still, for many applications, not mature with low productivity and

high cost. Other challenges for industrialization of metal AM, mentioned by the project partners, are standards and knowledge. The complexity of product quality for an AM-component, e.g., microstructure dependance, was also mentioned.

Open general results and knowledge that will be available from the projects are good examples of AM development, methods for faster material characterization, methods for faster material and process development, possibilities for grain refinement, and process vs product quality knowledge. Based on the projects, new or better products will also be introduced on the market in the future.

Some of the project results are only for project partners, e.g., specific knowledge around development (alloy compositions, process conditions, post treatment) and around applications (demands, performance). The network and understanding of limitations and remaining challenges were also pointed out as important for the project partners. In the future, the effect of the projects for the project partners will be faster product development, improved products, competitiveness, and IP. For the sand molds, more efficient production is expected.

2.1.4 Reflection on knowledge

Looking at the Swedish project portfolio within metal AM the last years, some projects include many partners and have a broad scope to solve more generic questions around e.g., environment, health and safety (HÄMAT) and digitalization (DISAM). Those are areas where many companies need new knowledge and could collaborate without competition. Other projects are more focused on solving a challenge for a specific material, process, and application, and often include only a few different companies along the value chain. Dissemination of detailed knowledge from those projects is often trickier.

According to the project partners in the ongoing projects from the SIP Metallic Materials AMcall 2018, the projects will be able to cover both broad general as well as more narrow and deeper knowledge generation. The fact that all projects claim that the projects have contributed to industrialization of future products could be a sign of narrow and deeper knowledge directly applicable for a product. However, the willingness by the project partners to share broad general knowledge could be a way to contribute to marketing of future products or the company brand. It could also be a way to speed up industrialization of the whole metal AM business, which would increase the total AM market for everyone.

2.2 Status for the challenges and research questions in RAMP-UP

Progress has been made regarding many of the RAMP-UP challenges, but none of them has been solved completely. The RAMP-UP challenges identified in 2017 are still overall valid and of high priority. This conclusion can be drawn from the two surveys answered by industry, both the project survey (answered by 6 projects) and the general survey (answered by 25 companies). Many companies said that activities related to all RAMP-UP challenges within the seven areas were still important. Some companies highlighted specific challenges and those are shown in Appendix 4. The main areas in RAMP-UP are commented below.

<u>Material</u>: The number of available materials has increased as well as the methods for faster material characterization and development. Ongoing activities include better understanding of the existing materials as well as development of new materials.

<u>Part and system design</u>: In this area, innovation has just started. Some guidelines have been developed and more are under development. Improved design for AM could help to solve many challenges later in the process chain and could be one key to speed up industrialization.

<u>Process stability and product quality:</u> In 2017, a huge challenge was process stability, i.e., reproducibility and robustness. Components could be different from machine to machine, but also from position to position in the same machine, and from day to day. Since then, improvements have been made by both the equipment suppliers and the users and the focus have shifted to wider aspects of quality assurance and quality control.

<u>Production</u>: To scale up and industrialize metal AM, many production aspects need to be considered as can be seen by the high number of projects in this area the last years. Several activities around digitalization of the value chain are ongoing involving many partners.

<u>Environment, health, and safety:</u> A broad collaboration between experts and stakeholders has been established trough the project HÄMAT. Still, more work is needed to fully understand the potential risks and take appropriate measures.

<u>Standardization and certification</u>: Review of existing standards and needs from Swedish industry was collected in spring 2020 [127]. However, this is a continuous work in dialog with SIS TK563.

Education and knowledge: Education has been developed on different levels, for both industry and academia. Spreading of knowledge is still important.

2.3 Status of the short- and long-term vision

The following short-term vision was agreed on in RAMP-UP 2017:

For the next 5 years the overall vision is that a great number of small, medium and large sized companies have evaluated AM and thereby been able to set the direction for how to best utilize AM for strengthening their competitiveness, both nationally as well as internationally.

To a large extent the vision has been fulfilled. Many companies have evaluated AM and some have products ready waiting for the increase of the market, that is forecasted. Other companies have evaluated AM but are struggling to find their business case. Still, many small and medium sized companies have not yet passed the first threshold of entering metal AM.

In addition, the following long-term vision was formalized in RAMP-UP 2017:

For the next 20 years the vision is that Sweden, by a fast and resource effective industrialization, has taken a pole position in key competence areas as well as a prime provider in a number of areas and applications.

The status of the long-term vision is too early to evaluate but at this stage the vision could still be considered achievable. New players are entering the market and Sweden needs to be active to keep the pole position in key competence areas like powder metallurgy.

3 Research needs for industrialization of metal AM

Input from Swedish industry was collected through a survey, a digital workshop, and discussions. The input was grouped and analysed to be able to see overall trends.

3.1 Research needs and priorities

A survey was sent to companies in Sweden with interest, activities and/or products within metal AM. The survey was spread through different channels; The Swedish Arena for AM of Metals, Vinnova competence centers CAM2 and AM4Life, SIP Metallic Material conference, Jernkontorets TO80, AMEXCI, FOP (Swedish society for non-destructive testing), and personal contacts. 25 companies answered the survey. Below follow two questions related to needs and priorities and the answerers have been grouped and summarized.

Question: What type of national actions would your company like to see to support the challenges you will address onwards?

According to the answers the focus should be on:

- Real industrial applications
- Value chain development in collaboration
- Fundamental understanding
- Standards
- Education and seminars

To better understand the meaning of the first two areas some answers from the survey follow below. One specific idea was to focus on new technology of AM that could reduce the cost for production and another idea was to make a national 3D printing strategy to enable self-sustained manufacturing capability in crisis.

Real industrial applications

- Projects related to the use of AM in real industrial applications, such as spare parts, smart parts, tool parts, low volume production parts.
- More focus on actual applications and end-users of produced components. Application development.
- Aids that help the big OEM to see the advantages of using AM as production method.

Higher TRL – value chain development

• Calls directly focused on AM at higher TRL¹ spanning over several areas of the AM value chain to enhance industrialization – moving from prototypes to full scale production.

¹ Comment: Though the required research activities could be at lower TRL

- We need to have projects where the entire supply chains are involved, from material producer to end-user and all the service providers in between.
- Supporting the Swedish AM service providers to grow, for example try to direct prototyping activities to AM companies.
- The focus should not be too pronounced on developing new materials or AM technologies but to rather industrialize those we have.
- Calls for AM initiatives where academia, SMEs and large companies cooperate to make sure that Sweden does not fall behind within AM in general as well as keeps its global position as one of the top AM powder producers in the world.
- AM ecosystem development on local, regional, national, international level.

<u>Question:</u> If there was a new AM-call, would you join research projects (with in-kind)? In what areas? What do you think should be the highest priorities for such a call? What challenges would you prioritize?

The areas with highest priority for a new AM-call at the moment are AM eco system development, quality assurance, industrialization efforts, material and process development, powder, and environment, health and safety. Below follow answers related to the different areas.

AM eco system development

- Projects with the entire value chain
- Closer connection to actual applications and product end-users (solving technical problems by AM, innovations made possible with AM, push the limit, design)
- Applications: Tooling, automotive, medical, general....

Quality assurance and control

- Quality control, product qualification, in-situ quality assurance, NDT
- Standardization

Industrialization efforts

- Increase production yield and process robustness
- Process monitoring, digitalization, simulation, AI or smart functions
- LEAN AM
- Automation (avoid manual handling)
- Gas applications
- Lower cost/better quality
- Upscaling, higher TRL
- Continuation of existing AM-projects (to take next step towards industrialization)
- Environment, health, and safety

Material and process development

- Process and material prediction and fundamental understanding
- Process parameters
- Material properties, fatigue properties
- Experimental verification of processes related to AM with simulation
- Post treatment, surface treatment
- Example pf materials: Tool steels, High strength aluminium alloys

Powder

- Powder production development
- Useful characterization as well as development of properties
- Understand the influence of powder characteristics on printability

A digital workshop was held on 7 May 2021 with 11 industrial representatives from powder manufacturers (4), equipment suppliers (3), and end-users (4). At least two of the companies have their own metal AM component production and others have access to internal or external printing. The workshop elaborated around the areas with highest priorities for a possible new metal AM call; AM eco system (value chain) development, quality assurance, and industrialization efforts (including environment, health, and safety). Powder, material, and process development was briefly discussed.

The workshop agreed that we are in a technology push situation, rather than a market pull. The only exception noticed was for some medical applications. To change this into a pull situation more trust would be required, both in the technology and among stakeholders along the value chain. Challenges are costs, high threshold to get started, complicated process chain (not just printing), qualification and verification, few standards, high secrecy due to competition, difficult to set/understand requirement, and lack of data and information.

Some solutions were proposed to build trust in the technology:

- Proof of concept costs calculations, business cases, show benefits, inspiring applications,
- Lower threshold to get started design for AM, testing without large investment, spread knowledge on all levels,
- Standards and guidelines around certification,
- Share data and information,
- Simulation of processes.

It was proposed that projects involving the entire value chain could potentially build trust for each other. It is also important to clarify different roles; who owns the challenge and how others can contribute to solve it. More input from end-users would be important to implement metal AM from different applications and focus on the challenges with highest priority. To build competence to be able to define and understand the requirements is a joint effort for the supplier and end-user. The requirements should be based on what is needed for the application and be adopted to the possibilities and restrictions with AM, and finally result in appropriate verification processes.

3.2 Possible areas where efforts would make a difference

Based on the given input from industry, the areas of highest priority are clear. However, to address the overall challenges, research is not the only solution. To change the situation from technology push to a market pull and decrease the gap between market expectations and industrialization, broader efforts are needed involving additional competences and building stronger collaborations.

It is important to involve the whole value chain to build a sustainable metal AM industry. One example is if national activities are initiated to lower the threshold for companies starting with AM, existing small AM component suppliers must be involved from the start. Getting more companies involved in AM will be beneficial for the suppliers in the long run, but can harm the short-term business, if subsidized testing is offered by other AM centers or universities.

Another effort is to assist in building an overall support structure with documents, guidelines, and tools covering quality assurance, business models, part lifecycle cost models, life cycle assessments, environment health and safety etc.

Finally, implementation and industrialization of the developments for research projects should not be forgotten.

3.3 Suggestions for wider knowledge spreading

Workshops and opportunities to meet and discuss experiences with others are often very inspiring and valuable. Since time is often lacking, recorded webinars could be a way to get knowledge whenever fitted into the calendar. Dissemination is an important part of all research projects and new ideas would be needed to reach an even wider audience. To include results from research projects into education, which is already done, is very effective. As the number of courses in metal AM are increasing in Sweden on all levels, more opportunities for this are given. A guide to existing education within metal AM in Sweden is planned to be made in 2021 within "The Swedish Arena for Additive Manufacturing of Metal" [www.AM-Arena.se]. Another way to increase and spread of knowledge could be publicly available summarizing written reports, short and long versions, of the final results from all projects. A guide to find interesting projects in different areas of interest would help here. Basic knowledge for people entering metal AM is sometimes harder to find, and a guide to available information and basic courses would also be valuable. We propose that existing platforms and networks should be utilized for these matters.

3.4 Updated version of the roadmap

The proposal from the project group is to keep the existing RAMP-UP roadmap as a base line. During time, the efforts will shift and need to be evaluated from time to time. The feed-back from industry is that the roadmap is still overall valid. Industrialization efforts are highlighted and can be found mainly within "Production", but also in other areas. Quality assurance and quality control involves "Process stability and product quality", but also "Material" and "Part and system design" and is supported by "Standards and certification". However, many of the challenges addressed at present are not directly related to research and technology development, but rather overall national strategies. In this work more national stakeholders needs to be involved.

4 Conclusions

The forecasts for the metal AM market are still optimistic, even if a dip occurred in 2020. Compared to 2019, the size of the metal AM market is expected to double until 2025 and be five times the size in 2030. Significant steps have been taken the last years in several areas and many great examples of industrialization can be seen, but widespread industrialization takes longer time than expected. In Sweden, some companies have products like powder, equipment, and AM components in production on high TRL-levels.

Funding of metal AM research in Sweden from different agencies sums up to almost 600 MSEK for 2010-2020. Only in 2020, the funding was 160 MSEK. Additionally, in-kind contributions from industry and other stakeholders are on approximately the same level. All RAMP-UP areas, that were identified in 2017, have been explored to different extent during the last years. Progress has been made regarding many of the RAMP-UP challenges, but more efforts are needed in all areas. The effect of the funding is expected to speed up the industrialization of metal AM in Sweden. In a few soon to be finished SIP Metallic Material projects all companies answering a survey (6 of 9) plan to release new products within 0-5 years, supported by the project results.

According to the Swedish industry, these are the current areas of highest priority for national support:

- AM eco system development
- Quality assurance and control
- Industrialization efforts
- Powder, material, and process development
- Environment, health, and safety

Getting from a technology push to a market pull situation, building trust for the technology and among stakeholders along the value chain, is key to growth and prosperity.

5 Acknowledgments

The project group acknowledge SIP Metallic Materials and Vinnova for funding this strategic project within metal AM and are grateful for the active support from Tero Stjernstoft, Vinnova, and Lotta Sörlin, SIP Metallic Materials/Jernkontoret. Input from other national funding agencies has been valuable to get the broad funding picture for Sweden. All input from industry in surveys, workshop and discussions have been the foundation in the work and are highly appreciated. Your needs and priorities will act as a guideline for funding of metal AM in Sweden the coming years by SIP Metallic Materials, Vinnova, and hopefully others.

6 References

- [1] "Roadmap for industrialization of metal AM," [Online]. Available: https://www.metalliskamaterial.se/en/research/fardplan-for-industrialisering-avadditiv-tillverkning-av-metaller/. [Accessed 21 05 2021].
- "SIP Metallic Material AM call," [Online]. Available: https://www.metalliskamaterial.se/en/research/nio-nya-am-projekt-inom-metalliskamaterial/. [Accessed 21 05 2021].
- [3] [Online]. Available: www.AM-Arena.se. [Accessed 21 05 2021].
- [4] T. Wohlers and et al., "Wohlers report- 3D-printing and AM Global state of the industry," Wohlers Associates, Inc., 2021.
- [5] [Online]. Available: https://www.smartechanalysis.com/news/2019-additivemanufacturing-market-growth/. [Accessed 21 05 2021].
- [6] [Online]. Available: https://www.luxresearchinc.com/press-releases/lux-researchforecasts-the-3d-printing-market-will-reach-51-billion-in-2030. [Accessed 21 05 2021].
- [7] "AM Power Report," 2021. [Online]. Available: https://additive-manufacturing-report.com/. [Accessed 21 05 2021].
- [8] "Metal Additive Manufacturing 2020-2030," [Online]. Available: https://www.idtechex.com/en/research-report/metal-additive-manufacturing-2020-2030/762. [Accessed 21 05 2021].
- [9] [Online]. Available: https://www.metal-am.com/articles/mtc3-the-challenge-of-3d-printing-adoption-and-the-inside-track-on-aviation/. [Accessed 21 05 2021].
- [10] [Online]. Available: https://www.bosch-mobility-solutions.com/en/solutions/powerelectronics/eaxle/. [Accessed 21 05 2021].
- [11] U. Gulzar and et al., "Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors," *Current Opinion in Electrochemistry*, vol. 20, pp. 46-53, 2020.
- [12] L. Fieber and et al., "Single-operation, multi-phase additive manufacture of electrochemical double layer capacitor devices," 03 03 2020. [Online]. Available: https://mapp.ac.uk/publications/additive-manufacturing-am-of-energy-storagedevices. [Accessed 31 05 2021].
- [13] [Online]. Available: https://additive-manufacturing-report.com/additive-manufacturing-market/#007. [Accessed 21 05 2021].
- [14] H. Quinlan and A. J. Hart, "Additive Manufacturing: Implications for Technological Change, Workforce Development, and Product Life Cycle," Nov 2020. [Online]. Available: https://workofthefuture.mit.edu/wp-content/uploads/2020/11/2020-Research-Brief-Quinlan-Hart4.pdf. [Accessed 21 05 2021].
- [15] "AM in Medtech panel discussion at Formnext," 2020. [Online]. Available: https://formnext.mesago.com/frankfurt/en/formnext_connect/formnext-connect_on-

demand/12112020/additive-manufacturing-medtech.html - login to Mesago needed to access. [Accessed 21 05 2021].

- [16] [Online]. Available: https://www.eos.info/en/3d-printing-examplesapplications/people-health/medical-3d-printing. [Accessed 21 05 2021].
- [17] "AM a boost for aerospace? panel discussion at Formnext," 2020. [Online]. Available: https://formnext.mesago.com/frankfurt/en/formnext_connect/formnextconnect_on-demand/10112020/am-schub-luft-raumfahrt.html - login to Mesago needed to access. [Accessed 21 05 2021].
- [18] S. Singamneni and et al., "Additive Manufacturing for the Aircraft Industry: A Review," *Journal of Aeronautics & Aerospace*, vol. 8, no. 1, 2019.
- [19] [Online]. Available: https://www.ge.com/additive/stories/additive-at-scale-avio-aero. [Accessed 21 05 2021].
- [20] [Online]. Available: https://www.relativityspace.com/. [Accessed 21 05 2021].
- [21] "AM in the automive industry panel discussion at Formnext," 2020. [Online]. Available: https://formnext.mesago.com/frankfurt/en/formnext_connect/formnextconnect_on-demand/11112020/am-autoindustrie.html - login to Mesago needed to access. [Accessed 21 05 2021].
- [22] [Online]. Available: https://www.metal-am.com/gm-opens-additive-industrialization-center-dedicated-to-am-for-automotive-sector/. [Accessed 21 05 2021].
- [23] [Online]. Available: https://www.3dprintingmedia.network/first-3d-printed-safety-part-approved-railway/ . [Accessed 21 05 2021].
- [24] [Online]. Available: https://mga-net.com/divisions/mobility-goes-additive/railiability/ . [Accessed 21 05 2021].
- [25] [Online]. Available: https://3dprintingindustry.com/news/major-european-railwayssign-mou-to-identify-applications-for-additive-manufacturing-153329/. [Accessed 21 05 2021].
- [26] [Online]. Available: https://www.siemens-energy.com/global/en/news/key-topics/additive-manufacturing.html. [Accessed 21 05 2021].
- [27] M. Wooldridge and et al., "Applications of Metal Additive Manufacturing in the Oil and Gas Industry," 04 05 2020. [Online]. Available: https://onepetro.org/OTCONF/proceedings-abstract/20OTC/1-20OTC/D012S001R005/107323. [Accessed 21 05 2021].
- [28] "AM in the manufacturing industry panel discussion at Formnext," 2020. [Online]. Available: https://formnext.mesago.com/frankfurt/en/formnext_connect/formnextconnect_on-demand/10112020/am-manufacturing-industry.html - login to Mesago needed to access. [Accessed 21 05 2021].
- [29] [Online]. Available: https://am-power.de/wp-content/uploads/2020/02/Maturity-Index.jpg. [Accessed 21 05 2021].
- [30] B. Langefeld and et al., "AM on the brink of industrialization Beyond powder bed Additive manufacturing on the brink of industrialization," 2018. [Online]. Available: https://www.rolandberger.com/en/Insights/Publications/Additive-manufacturing-onthe-brink-of-industrialization.html. [Accessed 21 05 2021].

- [31] [Online]. Available: https://www.ssab.se/nyheter/2020/10/ssab-tar-klivet-in-i-framtiden-med-ny-process-och-produkt. [Accessed 21 05 2021].
- [32] [Online]. Available: https://www.granges.com/sv/nyhetsrum/pressmeddelanden/2020/granges-slutforforvarv-av-getek-gmbh-och-bildar-det-nya-affarsomradet-granges-powdermetallurgy/. [Accessed 20 05 2021].
- [33] [Online]. Available: https://www.metal-am.com/sms-group-to-supply-outokumpusnew-stainless-steel-am-powder-atomisation-plant-under-subscription-contract/. [Accessed 20 05 2021].
- [34] "Volvo Cars investerar i amorf metall ska ge effektivare elmotorer," *Ny teknik*, vol. 21, no. https://www.nyteknik.se/premium/volvo-cars-investerar-i-amorf-metall-ska-ge-effektivare-elmotorer-7007106, p. 05, 2021.
- [35] [Online]. Available: https://3dp.se/2021/02/05/exmet-vaxlar-upp-med-volvo-cars/. [Accessed 21 05 2021].
- [36] [Online]. Available: https://www.gknaerospace.com/en/newsroom/newsreleases/2019/gkn-aerospace-expands-rrsp-contract-with-pratt--whitney-and-injectsnew-additive-manufacturing-and-composite-technologies-in-key-components/. [Accessed 21 05 2021].
- [37] "Technology readiness levels (TRL)," [Online]. Available: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h20 20-wp1415-annex-g-trl_en.pdf. [Accessed 21 05 2021].
- [38] [Online]. Available: https://am-power.de/studies/cost-of-metal-additivemanufacturing/. [Accessed 21 05 2021].
- [39] O. Diegel, A. Nordin and D. Mott, A Practical Guide to Design for Additive Manufacturing, Springer Singapore, 2019.
- [40] [Online]. Available: https://euromat2019.fems.eu/. [Accessed 08 06 2021].
- [41] [Online]. Available: https://www.epma.com/past-euro-pm-events. [Accessed 31 05 2021].
- [42] [Online]. Available: https://www.worldpm2022.com/. [Accessed 31 05 2021].
- [43] [Online]. Available: https://www.mpif.org/Events/PowderMet2021/POWDERMET2021Navigation.aspx. [Accessed 31 05 2021].
- [44] [Online]. Available: https://www.tms.org/AnnualMeeting/TMS2020. [Accessed 31 05 2021].
- [45] [Online]. Available: https://www.matscitech.org/. [Accessed 31 05 2021].
- [46] [Online]. Available: https://www.chalmers.se/en/centres/cam2/conferences%20and%20events/Pages/defau lt.aspx. [Accessed 31 05 2021].
- [47] [Online]. Available: https://www.mpif.org/Events/AMPM2019.aspx. [Accessed 31 05 2021].
- [48] [Online]. Available: https://www.ebam.fau.de/. [Accessed 31 05 2021].

- [49] [Online]. Available: https://www.euromat2021.org/. [Accessed 31 05 2021].
- [50] "Scopus Metrics," [Online]. Available: https://www.scopus.com/sources. [Accessed 31 05 2021].
- [51] A. Vyatskikh and et al., "Additive manufacturing of 3D nano-architected metals," *Nature Communications*, vol. 9, 2018.
- [52] T.-C. Lin and et al., "Aluminum with dispersed nanoparticles by laser additive manufacturing," *Nature Communications*, vol. 10, 2019.
- [53] Y. Song and et al., "Additively manufacturable micro-mechanical logic gates," *Nature Communications*, vol. 10, 2019.
- [54] C. Kenel and et al., "3D ink-extrusion additive manufacturing CoCrNiFe highentropy alloy micro-lattices Nature Comm. 2019 10," *Nature Communications*, vol. 10, 2019.
- [55] W. Chen and et al., "Microscale residual stresses in additively manufactured stainless steel," *Nature Communications*, vol. 10, 2019.
- [56] M.-S. Pham and et al., "Pham et al. Nature Comm. The role of side-branching in microstructure development in laser powder-bed fusion," *Nature Communications*, vol. 11, 2020.
- [57] [Online]. Available: https://www.sciencedirect.com/search?qs=additive%20manufacturing%20metal&date =2021. [Accessed 26 05 2021].
- [58] [Online]. Available: https://www.press.bmwgroup.com/global/article/detail/T0309872EN/newtechnology-campus-for-3d-printing-goes-on-stream:-bmw-group-builds-on-additivemanufacturing-with-skills-consolidated-at-single-site?language=en. [Accessed 21 05 2021].
- [59] [Online]. Available: https://www.voestalpine.com/additive-manufacturing/en/centersof-excellence/germany/. [Accessed 21 05 2021].
- [60] [Online]. Available: https://www.lindegas.com/en/processes/additive_manufacturing/index.html. [Accessed 21 05 2021].
- [61] [Online]. Available: https://worldwide.espacenet.com/patent/search?f=oprid%3Ain%3D19950101-20211231&q=additive%20manufacturing%20metal&queryLang=en%3Ade%3Afr. [Accessed 26 05 2021].
- [62] [Online]. Available: https://www.chalmers.se/en/centres/cam2/Pages/default.aspx. [Accessed 21 05 2021].
- [63] [Online]. Available: https://www.uu.se/en/research/am4life/. [Accessed 21 05 2021].
- [64] [Online]. Available: https://www.jernkontoret.se/sv/forskning-utbildning/teknikomraden/to-80-pulvermetallurgi/. [Accessed 21 05 2021].
- [65] [Online]. Available: https://www.sis.se/standardutveckling/tksidor/tk500599/sistk563/. [Accessed 21 05 2021].

- [66] [Online]. Available: https://www.matterhackers.com/store/l/basf-ultrafuse-316lmetal-composite-3d-printing-filament-175mm/sk/MRDKJRRS. [Accessed 21 05 2021].
- [67] [Online]. Available: https://www.incus3d.com. [Accessed 21 05 2021].
- [68] A. Lores and et al., "A review on recent developments in binder jetting," *Powder Metallurgy*, vol. 62, no. 5, pp. 267-296, 2019.
- [69] [Online]. Available: https://www.slm-solutions.com/products-and-solutions/machines/. [Accessed 21 05 2021].
- [70] [Online]. Available: https://www.eos.info/en/additive-manufacturing/3d-printingmetal/eos-metal-systems. [Accessed 21 05 2021].
- [71] [Online]. Available: https://www.renishaw.com/en/metal-additive-manufacturing-3d-printing-systems--37011. [Accessed 21 05 2021].
- [72] [Online]. Available: https://www.jeol.co.jp/en/products/am/JAM-5200EBM.html. [Accessed 21 05 2021].
- [73] [Online]. Available: https://www.waylandadditive.com/. [Accessed 21 05 2021].
- [74] "Metal AM technology landscape," 2021. [Online]. Available: https://ampower.de/tools/metal-additive-manufacturing/. [Accessed 21 05 2021].
- [75] [Online]. Available: https://www.beam-machines.com/applications-process-3d-printing. [Accessed 31 05 2021].
- [76] [Online]. Available: https://en.dmgmori.com/products/machines/additivemanufacturing/powder-nozzle. [Accessed 21 05 2021].
- [77] [Online]. Available: https://www.xjet3d.com/technology/. [Accessed 21 05 2021].
- [78] [Online]. Available: https://www.exaddon.com/printing-process. [Accessed 21 05 2021].
- [79] T. Sivarupan and et al., "A review on the progress and challenges of binder jet 3D printing of sand," *Additive Manufacturing*, vol. 40, 2021.
- [80] S. Farre, "3D sandprintade kärnor och formar en Omvärldsbevakning, Rapport 2020–010," Svenska Gjuteriföreningen, Jönköping, 2020.
- [81] J. Ålgårdh and et al., "State of the Art for Additive Manufacturing of Metals," 22 06 2017. [Online]. Available: https://www.metalliskamaterial.se/globalassets/3forskning/rapporter/2016-03898---state-of-the-art-for-additive-manufacturing-ofmetals-2_1.pdf. [Accessed 21 05 2021].
- [82] [Online]. Available: https://www.additive.sandvik/en/products-services-am/metal-powder/. [Accessed 21 05 2021].
- [83] [Online]. Available: https://www.hoganas.com/en/powder-technologies/additivemanufacturing-metal-powders/3d-printing-metal-powders/. [Accessed 20 05 2021].
- [84] [Online]. Available: https://www.uddeholm.com/sweden/sv/products/uddeholm-amcorrax/. [Accessed 21 05 2021].
- [85] [Online]. Available: https://www.carpenteradditive.com/. [Accessed 20 05 2021].

- [86] [Online]. Available: https://www.aubertduval.com/products/powders-for-additivemanufacturing/. [Accessed 21 05 2021].
- [87] [Online]. Available: https://www.heraeus.com/en/group/products_and_solutions_group/additive_manufact uring/metalpowders/overview_powder/metalpowders.html. [Accessed 20 05 2021].
- [88] [Online]. Available: https://www.gknpm.com/en/our-businesses/gkn-additive/Metal-powders-for-Additive-manufacturing/. [Accessed 20 05 2021].
- [89] [Online]. Available: https://www.granges.com/newsroom/other-news/great-powderin-new-business/. [Accessed 21 05 2021].
- [90] [Online]. Available: https://digitalmetal.tech/digital-metal-first-in-the-world-to-offerpure-copper-as-printing-material-to-its-market-leading-high-precision-metal-binderjetting-system/. [Accessed 20 05 2021].
- [91] P. Barriobero-Vila and et al., "Peritectic titanium alloys for 3D printing," *Nature Communications*, vol. 9, 2018.
- [92] A. Zatari and K. Xia, "Nano/ultrafine grained immiscible Fe-Cu alloy with ultrahigh strength produced by selective laser melting," *Materials Research Letter*, vol. 9, no. 6, pp. 247-254, 2021.
- [93] J. H. Martin and et al., "3D printing of high-strength aluminium alloys," *Nature*, vol. 549, pp. 365-369, 2017.
- [94] [Online]. Available: https://www.hrl.com/products-services/materials. [Accessed 21 05 2021].
- [95] S. A. Motaman and et al., "Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach," *JOM*, vol. 72, pp. 1029-1104, 2020.
- [96] B. Conduit, "Probabilistic neural network identification of an alloy for direct laser deposition," 2019. [Online]. Available: https://www.openaccess.cam.ac.uk. [Accessed 21 05 2021].
- [97] [Online]. Available: https://www.oerlikon.com/metco/en/solutionstechnologies/technology/rapid-alloy-development/. [Accessed 21 05 2021].
- [98] [Online]. Available: https://ammd.nist.gov/. [Accessed 21 05 2021].
- [99] [Online]. Available: https://www.rena.com/en/innovation/hirtisation/. [Accessed 21 05 2021].
- [100] [Online]. Available: https://www.remchem.com/technology/processes/extreme-isfprocess/. [Accessed 21 05 2021].
- [101] [Online]. Available: https://extrudehoneadditive.com/support-removal/. [Accessed 20 05 2021].
- [102] [Online]. Available: https://www.velo3d.com/velo3d-supportfree-process/. [Accessed 21 05 2021].
- [103] [Online]. Available: https://www.tctmagazine.com/additive-manufacturing-3dprinting-news/support-free-6-experts-business-impact-metal-3d-printing/. [Accessed 20 05 2021].

- [104] [Online]. Available: https://quintustechnologies.com/hot-isostaticpressing/applications/additive-manufacturing/. [Accessed 31 05 2021].
- [105] K. A. Shiyas and R. Ramanujam, "A review on post processing techniques of additively manufactured metal parts for improving the material properties," *Materialstoday: proceedings*, vol. In Press, 2021.
- [106] [Online]. Available: https://www.swecris.se/betasearch/details/project/201601968Vinnova. [Accessed 21 05 2021].
- [107] [Online]. Available: https://produktion2030.se/en/testbaddar/. [Accessed 21 05 2021].
- [108] [Online]. Available: https://www.vinnova.se/en/news/2020/11/new-pagenewnational-innovation-node-for-cyber-security/. [Accessed 21 05 2021].
- [109] [Online]. Available: s/avancerad-och-innovativ-digitalisering/cybersecurity-foradvanced-industrial-2021-01020/. [Accessed 21 05 2021].
- [110] [Online]. Available: https://media.daimler.com/marsMediaSite/en/instance/ko/NextGenAM-Takingmajor-steps-into-the-next-generation-of-industrial-3D-printing-Partner-projectinvolving-Premium-AEROTEC-Daimler-and-EOS-for-developing-series-additivemanufacturing-reaches-new-miles. [Accessed 21 05 2021].
- [111] [Online]. Available: https://www.hyprocell-project.eu/. [Accessed 21 05 2021].
- [112] [Online]. Available: https://manuela-project.eu/public-deliverables/. [Accessed 21 05 2021].
- [113] J. Kowen, "Strategies for advancing the atomation of metal Additive Manufacturing," *Metal Additive Manufacturing*, vol. 6, no. 4, pp. 113-124, 2020.
- [114] T. Debroy and et al., "Additive manufacturing of metallic components Process, structure and properties," *Material Science*, vol. 92, pp. 112-224, 2018.
- [115] "ISO/ASTM52907 Additive manufacturing Feedstock materials Methods to characterize metallic powders," [Online]. Available: https://www.astm.org/Standards/ISOASTM52907.htm. [Accessed 21 05 2021].
- [116] C. N. Hulme-Smith and et al., "Spreadability Testing of Powder for Additive Manufacturing," BHM Berg- und Hüttenmännische Monatshefte, vol. 166, pp. 9-13, 2021.
- [117] [Online]. Available: https://www.eos.info/en/additive-manufacturing/software-3d-printing/monitoring-software. [Accessed 21 05 2021].
- [118] M. Korpela and et al., "Additive Manufacturing—Past, Present, and the Future," in *Technical, Economic and Societal Effects of Manufacturing 4.0*, Palgrave Macmillan, Cham, 2020, pp. 17-41.
- [119] K. Wasmer and et al., "In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach," *Journal of Materials Engineering and Performance*, vol. 28, pp. 666-672, 2019.
- [120] C. Ledford and et al., "Evaluation of Electron Beam Powder Bed Fusion Additive Manufacturing of High Purity Copper for Overhang Structures Using In-Situ Real

Time Backscatter Electron Monitoring," *Procedia Manufacturing*, vol. 48, pp. 828-824, 2020.

- [121] C. Arnold and et al., "Layerwise monitoring of electron beam melting via backscatter electron detection," *Rapid Prototyping Journal*, vol. 24, no. 8, pp. 1401-1406, 2018.
- [122] P. Nandwana and et al., "Correlations Between Powder Feedstock Quality, In Situ Porosity Detection, and Fatigue Behavior of Ti-6Al-4V Fabricated by Powder Bed Electron Beam Melting: A Step Towards Qualification," *Journal of The Minerals*, vol. 70, pp. 1686-1691, 2018.
- [123] C. S. Lough and et al., "Correlation of SWIR imaging with LPBF 304L stainless steel part properties," *Additive Manufacturing*, vol. 35, no. 101359, 2020.
- [124] S. Yoder and et al., "Approach to qualification using E-PBF in-situ process monitoring in Ti-6Al-4V," *Additive Manufacturing*, vol. 28, pp. 98-106, 2019.
- [125] "ASTME3166 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build," [Online]. Available: https://www.astm.org/Standards/E3166.htm. [Accessed 21 05 2021].
- [126] "ISO/TC 261 Additive Manufacturing," [Online]. Available: https://www.iso.org/committee/629086.html. [Accessed 21 05 2021].
- [127] A. Strondl and et al., "Standardization of Metal Additive Manufacturing needs from Swedish Industry, MEF20127," 2020.
- [128] [Online]. Available: https://www.iso.org/search.html?q=additive%20manufacturing&hPP=10&idx=all_en &p=0&hFR%5Bcategory%5D%5B0%5D=standard. [Accessed 21 05 2021].
- [129] "Committee F42 on Additive Manufacturing Technologies," [Online]. Available: https://www.astm.org/COMMIT/SUBCOMMIT/F42.htm. [Accessed 21 05 2021].
- [130] [Online]. Available: https://www.sae.org/search/?qt=%22additive%20manufacturing%22&sort=relevance &sort-dir=desc&display=list&content-type=%28%22STD%22%29. [Accessed 21 05 2021].
- [131] "DNVGL-ST-B203: Additive manufacturing of metallic parts," 2020. [Online]. Available: https://oilgas.standards.dnvgl.com/download/dnvgl-st-b203-additivemanufacturing-of-metallic-parts. [Accessed 21 05 2021].
- [132] [Online]. Available: https://www.astm.org/COMMIT/F42_AMStandardsStructureAndPrimer.pdf. [Accessed 21 05 2021].
- [133] "Progress Report on AMSC Roadmap v2 Gaps," April 2021. [Online]. Available: https://share.ansi.org/Shared%20Documents/Standards%20Activities/AMSC/April_2 021_Progress_Report_AMSC_Roadmap_v2_Gaps.pdf. [Accessed 21 05 2021].
- [134] T. Åström and et al., "Effektanalys av stöd till strategiska utvecklingsområden för svensk tillverkningsindustri," 2010. [Online]. Available: https://www.vinnova.se/publikationer/effektanalys-av-stod-till-strategiskautvecklingsomraden-for-svensk-tillverkningsindustri/. [Accessed 21 05 2021].

[135] [Online]. Available: https://www.swecris.se/betasearch/?q=*&view=cards&lang=sv&sort=start_desc. [Accessed 21 05 2021].

Some of the metal AM research centers

Centre	Location	Topics (in metals)	Infrastructure & materials (metal)	Funding	Notes
SC3DP https://www.ntu.e du.sg/sc3dp	NTU, Singapore	Aerospace& Defense (unmanned vehicles) Marine&Offshore Future of manufacturing	PBF-LB, PBF-EB, DED Stainless steel, tool steels, cobalt- chrome, nickel-base superalloys, titanium alloys,	National Research Fundation (NRF) NTU Economic Development Board Industry partners	
CAMAL https://www.cama l.ncsu.edu	NCSU, Raleigh, NC, USA	Biomedical Aerospace& Automotive Hybride Manufacturing Logistics&Supply Chain Material Development	PBF-LB, PBF-EB, BJ Ti-alloys, Copper alloys, aluminium alloys, nickel-base superalloys, TiAl, Nitinol, niobium	Donations Industry partners	Mostly biomedic al – infrastru cture is donation s with focus on implants for animals
NCAM (MTC)Including:ESA AMBenchmarkingCentreASTM AMCentre ofExcellencehttps://ncam.the-mtc.org		Design for AM Materials AM Process Post-processing Simulations, Connectivity & Analytics	PBF-LB, BJ, FDM, DED	Catapult High Value Manufacturing Industry partners ESA ASTM Additional public funding	One out 7 Catapult centres in UK
MAPP <u>https://mapp.ac.u</u> <u>k</u>	Univ. Sheffield, UK ¹	Particulate Science and Innovation Integrated Process Monitoring, Modelling and Control Technologies Sustainable Future Manufacturing Technologies	PBF-LB, PBF-EB, DED Titanium alloys, aluminium alloys, nickel-base superalloys, high entropy alloys	Engineering Physics and Research Council Industry partners	EPRSC Future Manufac turing Hub

¹Including research teams from Cambridge Univ., Leeds Univ., Manchester Univ., Oxford Univ. Imperial College

Centre	Location	Topics (in metals)	Infrastructure & materials (metal)	Funding	Notes
AMRC centre at The University of Sheffield: <u>https://www.amrc</u> .co.uk/	The University of Sheffield	Aerospace Designer Alloys for Selective Laser Melting - Optimization of Components for AM - Customised Oral and Maxillofcial Protheses using AM - Development of new materials for laser sintering - Process and Material development for High Speed Sintering - Manufacture of parts for end users including F1 teams using PBF-EB	PBF-LB and PBF- EB	Multipartnership centre Public funding Industry partners	
IAM http://iam.polito.it	Politechni co di Torino (Polito), Italy	Design for AM Process Simulation New Materials Process Chain Integration Big Data Sensors&Beams Systems	PBF-LB, PBF-EB, DED, gas atomizer, HIP Titanium alloys, nickel-base superalloys, TiAl, aluminium alloys, tool steels	Competence Centre since 2018 Public funding Industry partners	Links to GE Avio Aero/Pol ito joint lab TAL
ADME https://3dppan.eu/ facility- centre/addme-lab- polimi	Politechni co di Milano (Polimo), Italy	Design for AM New Materials Powder Properties Digitalization& Monitoring& Big Data (AI, ML, etc) Multimaterials Performance (static, fatigue)	PBF-LB, PBF-EB, DED, BJ ²	Department of Excellence status with public funding Industry partners	

² Both Exone and Desktop Metal.

Centre	Location	Topics (in metals)	Infrastructure & materials (metal)	Funding	Notes
ACAM https://acam.rwth- campus.com	RWTH Aachen, Germany ³	Design for AM AM processing Heat Treatment Post Processing Quality Assurance	PBF-LB, DED, EBM various alloys, graded structures	Multipartnership centre Public funding Industry partners	
ZMP https://www.zmp. fau.de/forschung/ electron-beam- based-additive- manufacturing/ Application Centre VERTEC https://www.zmp. fau.de/forschung/ vertec/	Friedrich- Alexander Universität Erlangen- Nürnberg (FAU), Germany	Alloy development Cellular Mechanical Metamaterials Process Strategies PBF-EB of Special Alloys Expansion Capability of SBEM by Improved EB Technology	PBF-EB, DED (LMD, LBM), Titanium alloys, TiAl, copper alloys, nickel-base alloys, cobolt-chrome	Public funding Industry partners Application centre	
DMRC Centre (Direct Manufacturing Research Center at University of Paderborn) - https://dmrc.uni- paderborn.de/	University of Paderborn, Germany	Material science and development Process development Mechanical behavior Design technology Costs Strategic investigations	PBF-LB, alloy and process development	Public funding Industry partners Application centre	
ORNL Advanced Manufacturing Program: <u>https://www.ornl.</u> <u>gov/advancedman</u> <u>ufacturing</u>	Oak Ridge National Laboratory	Material and process development, Industrialisation	PBF_EB, BJ, PBF- LB, DED,	Public and industrial funding	
Monash Centre for Additive Manufacturing <u>https://platforms.</u> <u>monash.edu/mca</u> <u>m/</u>	Monash University, Australia	Material and process development	PBF-LB, DED, HIP	Public funding, industrial partnership	

³Including various departments at RWTH, Fraunhofer ILT, Fraunhofer IPT, Access (12 R&D partners)

RAMP-UP Roadmap 2017 Short term

Roadmap) Inte star	rdisciplinary t within 1-5	<u>(activities</u> years		Prioritization scale Low to high
Material Part and system design Process stability & Product quality Production	Test and demo	Round Robin	Business models along value chain	Application: Tooling	Spare parts
EHS Standards & certification Knowledge & Education					

1

RAMP-UP Roadmap 2017 Long term

Roadmap Activity start > 5 years – long term	Prioritization scale Low to high
Material Tailored materials for AM Multi-material builds	
Part and system design Design for material anisotropy Gain understanding of lattice properties Integration of sensors	
Process stability & Product quality AM processes with feedback loops for defect free production Speed Better surface finish	
Production AM as production system Big Data Digital twin Easy to change material in machines	Open source AM platforms
EHS	
Standards & certification	
Knowledge & Education	

Project list

Financing body	DNR	Project Title	Coordinator	Contribution, SEK	RAMP-UP classification
Vinnova	2020- 04855	Kvalitetssäkring av Additiv Tillverkning för fabricering av storskaliga lättviktsstrukturer	Procada AB	125 000	Process Stability & Product Quality
	2020- 04821	Swedish additive manufacturing testbed - Application Center for Additive Manufacturing (ACAM)	RISE IVF AB, div. material och produktion	1 000 000	Centra
	2020- 04655	Additive Manufacturing European Digital Innovation Hub	Stiftelsen Chalmers Industriteknik	200 000	Overall
	2020- 04339	SMF CAM2: FEM-baserad modell för stelning med speciell tillämpning för additiv tillverkning.	Thermo-Calc Software AB	800 000	Process Stability & Product Quality
	2020- 04328	FuRAM Uppföljning av forskningsbehov för industrialisering av additiv tillverkning i metall	Swerim AB	600 000	Overall
	2020- 04266	Ytbehandling och legeringsutveckling för reducerad vikt av AM aluminiumartiklar	Linköpings Universitet	3 350 000	Material
	2020- 04259	Utveckling av additivt tillverkade kylkomponenter med mikro- och minikanaler	Lunds Universitet, energivetenskaper	4 000 000	Parts & System Design
	2020- 04251	d-LIGHT: Designa lätt och snabbt - gröna gasturbiner baserat på innovativa lättviktslösningar	Linköpings Universitet	3 449 917	Parts & System Design
	2020- 04247	Excellent fabricering av lättviktsstrukturer genom varmformning, svetsning och AM	Brogren Industries AB	3 000 000	Production
	2020- 03794	Hard X-ray spectroscopy characterization of biocorrosion of additively manufactured Mg	Swerim AB, materialutveckling	499 000	Process Stability & Product Quality
	2020- 03792	In-situ studie av korrosion egenskaper av additivt tillverkat rostfritt stål med normal trycks X-ray spektroskopi	Swerim AB, materialutveckling	500 000	Process Stability & Product Quality
	2020- 03784	Spatially resolved X-Ray analysis of machining induced white layers	Lunds Universitet, institutionen för maskinteknologi	392 000	Process Stability & Product Quality

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
body				SEK	classification
Vinnova	2020-	In-situ Synchrotron	Swerim AB, material-	499 000	Process
	03782	Investigations of Additive	och processutveckling		Stability &
		Manufacturing parts for Ni-			Product
		base Superalloys			Quality
	2020-	Additiv tillverkningslösning	GKN Aerospace	4 552 943	Production
	02998	& industralisering för nästa	Sweden AB, avd 9635		
		generation	design engineering		
		komressormellanhus			
	2020-	DEMAND-REPAIR	GKN Aerospace	4 230 021	Production
	02997	"Utveckling av avancerad	Sweden AB. R&T		
		tillverkningsteknik för	process engineering		
		reparation av nästa			
		generations luftmotorer"			
	2020-	3D-printad högfrekvent	Swerim AB.	400 000	Process
	02908	induktor till elfordon för	produktionsteknik		Stability &
		både högre verkningsgrad			Product
		och högre effekttäthet			Quality
	2020-	Additiv tillverkning för	Procada AB	125000	Process
	02492	fabricering av storskaliga			Stability &
		lättviktsstrukturer			Product
					Quality
	2020-	Värmebehandling av	Swerim AB	125000	Knowledge &
	02447	metallkomponenter för			Education
		svensk flygindustri			
	2020-	MagNeutron -	Swerim AB	384000	Process
	00828	Texturanalysis, med	materialutveckling	001000	Stability &
	00020	neutrondiffraktion av			Product
		magnesiumlegeringar			Quality
	2020-	Förhättrade egenskaper hos	Mittuniversitetet	300000	Overall
	00808	additivt tillverkade metaller	Witteniversitetet	500000	overail
	00000	genom tillsats av grafen			
	2020-	IntDemo Motor	GKN Aerospace	52 000 000	Standards &
	00188		Sweden AB	52 000 000	Certification
	2020-	IntDemo-Elvanlan	SAAB AB Aeronautics	48 000 000	Production
	00187	int Demo-Hygpian	SAAD AD ACI ONduties	48 000 000	ribudetion
	2019-	In-situ monitorering och	Procada AB	325.000	Process
	05017	rogloring av additiv	FIOCAUA AD	323 000	Stability &
	05917	tillverkning för fabrikation			Broduct
		av flygmotorkomponenter			Quality
	2010	Demonstration of	Chalmers Tokniska	0 107 670	Production
	2019-	Infrastructure for		9 407 079	FIOUUCIION
	03331	Digitalization enabling	Подзкоја		
		industrialization of AM			
	2010-		GKN Aerospace	4 500 000	Parts & System
	05270	five Structures	Swodon AR	4 500 000	Design
	2010	SME CAM2: Adaptrar för		150,000	Design Darts & System
	7013-	navigationssensorer till	Lasci iculi LSI I AD	120,000	Design
	05505	kirurgiska instrument			Design
	2010	Lättare värmeväylare		325 000	Parts & System
	2019-	genom additiv tillverkning	MJEIVI AD	323 000	Design
	2010	SME CAM2.	Additive Innovation &	250 000	Drocoss
	2019-	Drocessontimering utay	Manufacturing	230 000	Stability 9.
	03332	FBM processon för TicAIAV			Product
		tenom nunktemältning	SWEUCH AD (AIN)		Quality
		genom punktsmaitning	l		Quality

Financin	
body	
Vinnova	

g	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
				SEK	classification
	2019-	SMF CAM2: Adaptrar för	AIM Sweden AB	150 000	Production
	05311	navigationssensorer till			
		kirurgiska instrument			
		Summa			
	2019-	SMF CAM2: Adaptrar for	Ortoma AB	200 000	Production
	05310	navigationssensorer till			
		Kirurgiska instrument			
	2010	Summa	Currentine A.D.	F 00 000	Dragona
	2019-	and SCC in additively	Swerim AB	500 000	Process Stability &
	05504	manufactured stainless			Broduct
		steel by neutron diffraction			Quality
	2019-	Synkrotronstudie av	Swerim AB material-	/198.000	Material
	05287	sprickor i AM-byggda delar	och processutveckling	498 000	Wateria
	05207	med laser-	oen processurveeking		
		pulverbäddsfusion			
	2019-	In-situ X-ray diffraction	Kungliga Tekniska	500 000	Material
	05276	study of additive	Högskolan,		
		manufacturing to aid in tool	institutionen för		
		steel development	materialvetenskap		
	2019-	Implementering av additiv	RISE IVF AB, additiv	325 000	Process
	05261	tillverkning av metalliska	tillverkning		Stability &
		komponenter i			Product
		precisionsgjuterier			Quality
	2019-	MagLite	Exmet AB	260 000	Process
	05259	Magnesiumkomponenter			Stability &
		för lättviktstillämpningar			Product
		medelst AM			Quality
	2019-	SMF ECO2: Automatiserad	Yovinn AB	400 000	Knowledge &
	05066	urvalsprocess for Additiv			Education
	2010	Marid Class Material II	Curring A.D.	477.000	Matarial
	2019-		Swenin AB	477 000	Material
	2019-	LAserdrivna Metalldronnar	Luleå Tekniska	496 799	Process
	04872	som möiliggör multimaterial	Universitet	450755	Stability &
	04072	4D-printing (IAM-4D) -	oniversitet		Product
		etapp 2			Quality
·	2019-	SMF CAM2: Laser Metal		247 500	Process
	04815	Deposition as repair method			Stability &
		(LERA)			Product
					Quality
	2019-	Kvantifiering av restaustenit	Kungliga Tekniska	299 000	Material
	03614	i additivt tillverkade	Högskolan,		
		stållegeringar med hjälp av	institutionen för		
		synkrotronljus	materialvetenskap		
	2019-	Machining of AM	Swerim AB	680 000	Knowledge &
	03584	components (MacAM)			Education
	2019-	Spänningspäverkan och	Swerim AB	3 898 500	Process
	02945	korrosionsegenskaper hos			Stability &
		inaterial transtalida genom			Product
	2010		Luloå Tokniska	2 000 000	Qudiity
	2019-	additivtillverkade	Luied rekniska	5 000 000	raits & System Design
	02941	varmformningsverktyg	GIIVEISILEL		Design
		· · · · · · · · · · · · · · · · · · ·	1	1	

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
body				SEK	classification
Vinnova	2019-	Processstyrning av additiv	GKN Aerospace	4 060 000	Process
	02752	tillverkning med laser och	Sweden AB, AVD		Stability &
		tråd	9634JA		Product
					Quality
	2019-	Utveckling av	GKN Aerospace	3 950 620	Process
	02741	elektronstrålesmältningspro	Sweden AB, R&T		Stability &
		cessen med titan för	PROCESS		Product
		tillverkning av framtida	ENGINEERING		Quality
	2010	flygmotorkomponenter		4 700 224	
	2019-	Metalldeponering med	Hogskolan Vast	4 799 221	Parts & System
	02638	additiv tillverkning -			Design
	2010-	Våga printa tunt	Swerim AB	4 280 000	Parts & System
	02631	vaga printa tunt	SWEIIIII AD	4 280 000	Design
	2019-	Accelererad Utveckling av	RISE IVE AB avdelning	775 000	Material
	02625	Avancerade Höghållfasta	tillverkning	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	material
		Lättviktslegeringar för			
		Selektiv Lasersmältning			
		Process			
	2019-	Generisk partikelmodell för	Kungliga Tekniska	1 799 627	Material
	02618	FEM kopplad till Calphad-	Högskolan		
		metoden för ingående data			
	2019-	Utveckling av EBM-tillverkad	Chalmers Tekniska	3 600 000	Process
	02607	titanlegering delar för	Högskola		Stability &
		högpresterande			Product
		lättviktdesign		405.000	Quality
	2019-	Detektering av tojning-	Malmo Universitet,	495 000	Process
	02584	diffraction ash	Takuiteten for teknik		Stability &
		tomografievperiment			Quality
	2019-	Easförändringar i additivt	Höganäs AB	500.000	Material
	02564	tillverkade komponenter	noganas Ab	500 000	Wateria
	2019-	Infrastructure for	Chalmers Tekniska	495000	Knowledge &
	02502	Digitalsation enabling	Högskola		Education
		industrialization of Additive	0		
		manufacturinG - IDAG			
	2019-	Additiv tillverkning av	Swerim AB	1109960	Material
	02138	metallkomponenter			
		förstärkta med grafen -			
		Addit-G		704 704	
	2019-	Mojliggora tillväxt av	Kungliga Tekniska	734 791	Standards &
	01087	metalipulverforsaljning,	нодзкојап		Certification
		flytharbet			
	2019-	Standardisering inom	Swerim AB	1 000 000	Standards &
	01080	additiv tillverkning av metall	Swernin / B	1000000	Certification
	2019-	Flexibel additiv tillverkning	Chalmers Tekniska	3 600 000	Parts & System
	00786	av komponenter för	Högskola		Design
		millimeter och	-		-
		mikrometervågor			
	2019-	ROBust Optimering i Design	Örebro Universitet,	4 995 981	Parts & System
	00779	för Additiv Tillverkning	akademin för		Design
		(ROBODAM)	naturvetenskap och		
			teknik		

Financing
body

DNR	Project Title	Coordinator	Contribution,	RAMP-UP
			SEK	classification
2019- 00029	Additiv Tillverkning för Livsvetenskaperna	Uppsala Universitet	32 788 690	Centra
2018- 05292	Innovativa Pulverkomponenter via Additiv Tillverkning - Globalinitiativ	Chalmers Tekniska Högskola	4 750 000	Overall
2018- 04995	SMF CAM2: Optimized fixtures through metal additive manufacturing (3d- Fix)	Cascade Control Ab	150 000	Process Stability & Product Quality
2018- 04888	SMF CAM2: Optimized fixtures through metal additive manufacturing (3d- Fix)	Brogren Industries AB	850 000	Knowledge & Education
2018- 04737	Demonstration och kunskapsspridning av nationella testbäddar inom additiv tillverkning	RISE IVF AB, avdelningen för tillverkning	500 000	Knowledge & Education
2018- 04591	Doktorand - Användning av nya optiska och avbildande tekniker för ytstruktur karakterisering	RISE Research Institutes of Sweden AB, RISE Mätteknik	300 000	Process Stability & Product Quality
2018- 04444	Framtidens fabrik för AM och komposit - OGV- Demonstrator (FAMKO)	GKN Aerospace Sweden AB	9 000 000	Production
2018- 04432	In-situ neutron/synkrottron studie av mikrostrukturens utveckling i AM verktygsstål	Uddeholm AB	500 000	Process Stability & Product Quality
2018- 04324	LAM-4D - Laserdrivna metalldroppar som möjliggör multi-material 4D- printing	Luleå TU	500 000	Production
2018- 04312	RapikKAT - Radikalt ökad produktivitet genom innovativt designade kylkanaler tillverkade med AM	RISE, Borås	499 616	Parts & System Design
2018- 04311	Amexci Safe by design	Alfred Nobel Science Park	500 000	Parts & System Design
2018- 04283	World Class Material	Swerim AB	500 000	Material
2018- 03910	AMCO-Säker användning av AM rostfria stålprodukter i korrosiva miljöer	Swerim AB	2 289 618	Process Stability & Product Quality
2018- 03336	HÄMAT2 - Hälso- och miljöpåverkan orsakad av AM och utmaningar för en hållbar produktion - 2	Swerim AB	9 997 120	Environment, Health & Safety
2018- 02987	Framtagning av verktyg för tillverkning av AM förstärkt titandetalj	RISE IVF AB	325 000	Production

Financing
body
Vinnova

DNR	Project Title	Coordinator	Contribution,	RAMP-UP
			SEK	classification
2018-	Graderad AM-	Swerim AB	800 000	Material
02849	högtemperaturlegering			
2018-	Lättare komponenter	RISE IVF AB	5 140 000	Parts & System
02844	genom AM av Al-legeringar			Design
2018-	MoSi2-baserat material	Chalmers Tekniska	1 000 000	Material
02597	tillverkat via SLM för	Högskola		
	korrosions/erosions			
	komponenter i gasturbiner			
2018-	<u>Design av en</u>	QuesTek Europe AB	2 712 139	Material
00815	högpresterande amorf			
	legering för additiv			
	<u>tillverkning</u>			
2018-	Applikationsdriven	Swerea KIMAB AB	5 737 693	Process
00809	utveckling för ökad			Stability &
	robusthet och pålitlighet i			Product
	additiv tillverkning av metall			Quality
2018-	Materialdesign för additiv	Swerea KIMAB AB	5 810 000	Material
00805	tillverkning av industriella			
	<u>verktyg</u>			
2018-	Nya materiallösningar för	Linköpings universitet	5 000 000	Material
00804	defektfri additiv tillverkning			
	av svårsvetsade Ni-baserade	le Ni-baserade		
	<u>legeringar</u>			
2018-	Design av Nya Material och	Kungliga Tekniska	6 330 000	Material
00803	Processer för Nästa	Högskolan		
	Generations Additiv			
	Tillverkning			
2018-	Industrialisering av additiv	Mittuniversitetet	4 880 804	Production
00801	tillverkning genom			
	multifunktionell			
	<u>efterbearbetning</u>			
2018-	<u>Hållbar tillverkning av 3D-</u>	Swerea SWECAST AB	1 730 000	Production
00800	printade sandformar och -			
	<u>kärnor</u>			
2018-	Kontroll av pulver och	Swerea IVF AB	4 444 150	Process
00799	processvariationer för en			Stability &
	robust och repeterbar			Product
	additiv tillverkning i metall			Quality
2018-	<u>Design och</u>	Chalmers Tekniska	4 650 000	Parts & System
00798	materialprestanda för	Högskola		Design
	lättvikt vid			
	pulverbäddbaserad additiv			
	tillverkning			
2018-	Utbildning i produktion av	Kungliga Tekniska	883 278	Knowledge &
00794	<u>metallpulver – Framtidens</u>	Högskolan		Education
	arbetskraft i Sverige			
2018-	Okad funktionalitet av	Uppsala universitet	186 000	Process
00754	metalliska material från			Stability &
	additiv tillverkning genom			Product
	ytmodifiering			Quality
2018-	Industriell transformation	Orebro universitet	808 823	Production
00511	genom digitalisering			
	baserad på 3D-printning av			
	<u>metaller (Digi3D-skiftet)</u>			

Financing
body
Vinnova

DNR	Project Title	Coordinator	Contribution,	RAMP-UP
			SEK	classification
2018-	Smarta MetalLyftet	Swerea SWECAST AB	500 000	Knowledge &
00491				Education
2018-	Planering av testmiljö för	Swerea IVF AB	500 000	Process
00485	<u>visualiserad</u>			Stability &
	<u>tillståndsmätning av</u>			Product
	komponenter via integrerad			Quality
	<u>fiberoptik</u>			
2017-	Koordinering av forskning	Swerea KIMAB AB	1 500 000	Overall
05135	inom additiv tillverkning av			
	<u>metall</u>			
2017-	Adaptiv oförstörande	GKN Aerospace	5 468 557	Process
04856	provning vid additiv	Sweden AB		Stability &
	<u>tillverkning</u>			Product
				Quality
2017-	Additiv tillverkning av	GKN Aerospace	2 830 001	Process
04850	högtemperaturmaterial och	Sweden AB		Stability &
	utvärdering av svetsbarhet			Product
				Quality
2017-	Defekt prediktering för laser	GKN Aerospace	2 739 764	Process
04847	metall deponering av Ti-6Al-	Sweden AB		Stability &
	<u>4V tråd</u>			Product
				Quality
2017-	SUDDEN- Ytfenomen och	GKN Aerospace	6 958 000	Process
04846	defekters påverkan på	Sweden AB		Stability &
	mekaniska egenskaper hos			Product
	additivt tillverkad Ti-6Al-4V			Quality
2017-	Hållbart utnyttjande av	Stiftelsen Chalmers	500 000	Process
04799	<u>metallpulver i</u>	Industriteknik		Stability &
	pulverbäddsbaserad additiv			Product
	tillverkning			Quality
2017-	Effektivt cirkulationssystem	Stiftelsen Chalmers	500 000	Environment,
04796	tör material i additiv	Industriteknik		Health &
	tillverkning			Safety
2017-	Digitalisering av	Swerea IVF AB	7 126 400	Production
04776	tillverkningsflödet av Additiv			
	Tillverkning I Sverige			_
2017-	Hogre kvalité på lätta	Swerea IVF AB	500 000	Process
04261	konstruktionsdetaljer			Stability &
	tillverkade via Additiv			Product
2017	<u>Tillverkning</u>			Quality
2017-	Ny processteknik för	Chalmers Tekniska	800 008	Production
02531	medelserieproduktion av	Hogskola		
	neitata pulvermetallurgiska			
2017	material och komponenter	C N/5 10	6.050.005	2
2017-	Uppkoppling och	Swerea IVF AB	6 350 000	Process
01950	tilistandsmatning av 3D-			Stability &
	tillverkade komponenter i			Product
	kravande applikationer			Quality
2017-	Digitalisering av AM-	Swerea KIMAB AB	3 550 000	Production
01636	produktionskedjan för att			
	<u>skapa ettektivitet</u>			

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
body				SEK	classification
Vinnova	2017-	Tools and methods for	Swerea KIMAB AB	250 000	Knowledge &
	01495	certification of AM			Education
		fabricated parts for			
		aerospace applications			
	2017-	Innovativ pulverbaserad	Chalmers Tekniska	5 970 000	Material
	01265	komponentteknologi	Högskola		
	2017	(INNOKOMP)		500.000	<u> </u>
	2017-	Halso-och miljopaverkan av	Swerea KIIVIAB AB	500 000	Environment,
	01256	utmaningar för an hållbar			Health &
		produktion- HÄMAT			Salety
	2017-	Metal Paste - Utveckling av	BRYNE AB	300.000	Production
	00544	en metod för additiv		500 000	rioduction
	00544	tillverkning i metall			
	2016-	ReLed-3D Resurseffektiv och	Swerea IVF AB	3 749 000	Production
	05418	flexibel produktion inom			
	fordo	fordonsindustrin genom			
		additiv tillverkning i metall			
	2016-	Framtida direkttillverkade	Jernkontoret	2 481 000	Overall
	05267	<u>metallstrukturer</u>			
		(DirektMetall)			
	2016-	Kompetenscentrum för	Chalmers Tekniska	36 000 000	Centra
	05175	additiv tillverkning - metall	Högskola	0 0 7 7 5 0 0	
(2016-	Snabbare introduktion av	Swerea IVF AB	3 377 500	roce
	04460	digitalisarad kvalitatssäkring			
		och digitala produktlager			
	2016-	Verifierad digital	Örebro universitet	4 000 000	Production
	04384	optimeringsarena för	orebro universitet	4 000 000	Troduction
	04304	verktygsproduktion genom			
		3D-metallprintning			
	2016-	Uppkoppling och	Swerea IVF AB	500 000	Process
	03972	tillståndsmätning av 3D-			Stability &
		<u>tillverkade komponenter i</u>			Product
		krävande application			Quality
	2016-	<u>Färdplan för forskning och</u>	Swerea KIMAB AB	3 000 000	Overall
	03898	innovation för			
		industrialisering av additiv			
		tillverkning av metaller i			
	2016-	Additivt tillverkade	Swerea IVE AB	1 750 000	Production
	03305	verktygsdelar för flexibel	Swelea IVI AD	4750000	FIGURE
		produktion och optimerade			
		produktegenskaper			
	2016-	Flexibel tillverkning av	Chalmers Tekniska	3 150 000	Production
	03290	funktionella	Högskola		
		kopparbaserade produkter			
	2016-	Nytt nickelbaserat material	Chalmers Tekniska	2 000 000	Material
	02675	för additiv tillverkning av	Högskola		
		komponenter för			
	2010	<u>nogtemperaturapplikationer</u>		4 000 000	En line a second
	2016-	Atervinningsstudie av	Swerea KIIVIAB AB	T 000 000	Environment,
	01990				nealul &
					Jaiety

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
body				SEK	classification
Vinnova	2016-	Digitalisering av komplett	Swerea SWECAST AB	4 000 000	Production
	01968	produktionsflöde en			
		förutsättning för additiv			
		tillverkning (DINA)			
	2016-	Additiv Tillverkning av	Swerea IVF	414 000	Production
	01925	Komplexa Keramiska Kärnor			
		för Percisionsgjutning			
	2015-	Kompetensutveckling inom	SP SVERIGES TEKNISKA	150 000	Knowledge &
	05830	optimering av EBM-	FORSKNINGSINSTITUT		Education
		<u>teknologin</u>	AB		
	2015-	<u>Högpresterande</u>	Swerea KIMAB	5 000 000	Parts & System
	05086	lättviktskomponenter			Design
		genom additiv tillverkning			
	2015-	<u>Test- och</u>	Swerea SWECAST AB	600 000	Knowledge &
	03989	demonstrationsanläggning			Education
		för geometriskt komplexa			
		komponenter till			
		<u>flygindustrin (ToD Cast)</u>			
	2015-	Pulver och materialdesign	Chalmers Tekniska	4 610 000	Material
	03457	för flexibel addtiv	Högskola		
		tillverkning av			
		högpresterande			
	-	<u>komponenter</u>			
	2015-	Modelleringsstödd	Swerea KIMAB	649 000	Material
	03449	Materialutveckling för			
		Additiv Tillverkning och nya			
		<u>Pulverstål</u>			
	2015-	Utveckling av nästa	Swerea SWECAST AB	2 880 000	Parts & System
	03447	generations verktyg genom			Design
		<u>additiv tillverkning - Steg 2</u>			
	2015-	Utvärdering av metod för	Swerea SWECAST AB	461 000	Production
	03444	gjutinfiltrering av järnpulver	AB		
		(P-cast).			
	2015-	Additiv tillverkning med	GKN	1 500 000	Production
	02285	<u>pulver som tillsatsmaterial</u>			
	2014-	<u>Optimerad</u>	SP	5 400 000	Parts & System
	05148	produktionsprocess för			Design
		additiv tillverkning			
	2014-	Nya generationens verktyg	Swerea SWECAST AB	996 295	Production
	01830	genom additiv tillverkning			
		(ADDING)			
	2014-	Innovativ	Chalmers	8 000 000	Material
	00795	komponentteknologi via			
		pulverteknik			
	2013-	Additivt tillverkade verktyg	VBN Components	3 304 000	Production
	04686	tor skarande bearbetning			
	2013-	Iribologisk provning av	VBN Components	457 750	Material
	03645	additivt tillverkat material			
		tor bransleventil	0.00		
	2012-	Systematiserad	Swerea SWECAST AB	500 000	Production
	03789	prototyptramtagning för	АВ		
		okad konkurrenskraft			
		<u>(SPUK)</u>			

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
boay				SEK	classification
Vinnova	2012- 02520	Additiv tillverkning av fordonskomponenter	Högskolan Väst	500 000	Production
	2011-	Plattform för	Swerea IVF	4 000 000	Production
	03413	direkttillverkning av			
		mikrokomponenter			
ĸĸ	20200	Bitr lektori	Högskolan Väst	2 598 198	Knowledge &
	20200	produktionsteknik inriktning		2 330 130	Education
	200	additiv tillverkning			Ludeation
	20200	Adjungerad lektor Additiv	Högskolan Väst	2 047 635	Knowledge &
	198	tillverkning Sandvik		2 047 035	Education
	20200	Adjungerad lektor Additiv	Högskolan Väst	964 844	Knowledge &
	197	tillverkning ARCAM		504 044	Education
	20200	PROF-AM Internationell	Mittuniversitetet	337 820	Knowledge &
	143	gästprofessor i additiv	Witteniversitetet	337 020	Education
	1.0	tillverkning			Eddoddon
		Cracking criteria for welding	Högskolan Väst	492 000	Process
		and welding based AM			Stability &
					Product
					Quality
	2019	PODFAM – Pulverbädds-	Högskolan Väst	49 200 000	Production
	Forsk-	baserad additiv tillverkning			
	ningsp	av metallkomponenter för			
	rofiler	gasturbinapplikationer			
	2019	LasReX – Lasermetalldepon-	Högskolan Väst	2 460 000	Production
	Prosp	ering med Hastelloy X pul-			
	ekt	ver för reparation av			
		lastbärande gasturbin-			
		komponenter			
	2019	AMHIPP - Avancerade	Karlstad Universitet	14 400 000	Material
	Syner	material för högpresterande			
	gi	produkter			
	2019	Nanosafety - Hälsoeffekter	Orebro Universitet	4 075 727	Environment,
	HOG	av partiklar från additiv			Health &
	2010	tillverkning		10.000.000	Safety
	2018	Synergi - Svetsbaserad	Högskolan Väst	12 300 000	Production
	2010		Llögskolan Väst	2 460 000	Drooper
	2018	Prospekt - Forbattrad	nogskolan väst	2 460 000	Process Stability 9
		sprickprogagering av			Broduct
		tillvorkad gonom AM			Quality
	2019	Rekrytering - Rekrytering	Högskolan Väst	360 000	
	2010	gästnrofessor i svetshaserad		309 000	Education
		AM av superlegeringar			Ladeation
	20170	Synergi - Utveckling av	Högskolan Väst	14 197 158	Process
	060	additiv tillverkning med	-0	,	Stability &
	-	laser och tråd för			Product
		tillverkning av			Quality
		högpresterande			
		komponenter			
	20160	HÖG - Tooladdict -	Stiftelsen Högskolan i	4 338 087	Production
	327	Konkurrenskraftig	Jönköping		
		framtagning av verktyg med			
		additiv tillverkning			

Financing	DNR	Project Title	Coordinator	Contribution,	RAMP-UP
body				SEK	classification
KK	20160	Forskningsprofil+ Hv	Högskolan Väst	18 000 000	Centra
	281	SUMAN-Next	<u> </u>		
	20140	Avancerade verktyg genom	Orebro universitet	2 437 001	Production
	153	additiv tillverkning			
SEM	P4871	Effektiv kombinatorisk	Uppsala Universitet	5 000 000	Material
	6-1	design av mjukmagnetiska			
		metallglas för additiv			
		tillverkning			
	P4830	Design, optimering och	Kungliga Tekniska	3 563 000	Parts & System
	3-1	tillverkning av högeffektiva	Högskolan		Design
		värmeväxlare tillverkade			
		med 3D-printing			
	P4413	Multifysiktopologioptimerin	Linköpings Universitet	2 585 435	Parts & System
	5-1	gsmetoder för design av			Design
		gasturbinkomponenter			
		genom additiv tillverkning			
	P4411	Prediktering av	Linköpings Universitet	3 622 254	Process
	2-1	utmattningslivslängd hos			Stability &
		additivt tillverkade duktila			Product
		superlegeringar			Quality
	P4035	Resurseffektiv tillverkning	VBN Components	4 079 700	Production
	4-1	av nya högpersterande			
		slitstarka material			
	P3836	Energieffektiva magnetiska	Exmet AB	350 000	Material
	5-1	material för elektrifierade			
		fordon			
			1	Γ	
SSF	FID	Forskarutbildning inriktning	Swerim AB	2 500 000	Material
	17-	mot Mg			
	0028				
	FID	Forskarutbildning inriktning	RISE IVF	2 500 000	Process
	17-	mot Al			Stability &
	0015				Product
		-			Quality
		Matamatik för	L Chalmers Tekniska	2 500 000	Droduction

0015				Product
				Quality
ID15- 58	Matematik för elektronstrålesmältning i 3D-skrivning i metall	Chalmers Tekniska Högskola	2 500 000	Production
GMT1 5-48	Utveckling av processer och material i additiv tillverkning	Uppsala universitet	32 500 000	Process Stability & Product Quality
ID14- 60	Additiv tillverkning:Skadetålighet hos flygkristiska artiklar	Linköpings Tekniska Universitet	2 500 000	Process Stability & Product Quality
vdb15 -5	Människa o maskin	Tekniska Museet	100 000	Knowledge & Education
PV10- 64	Antibakteriella kronor och broar tillverkade via EBM	Uppsala universitet	0	Production

Financing body	DNR	Project Title	Coordinator	Contribution, SEK	RAMP-UP classification
TVV Regional ERUF		Förstudie förstärkt arena produktions-teknisk utveckling	Innovatum	300 000	Centra
		Springboard	Innovatum	10 600 000	Production
	ID 20201 538	RepLab - Reparation och återanvändning av metallprodukter inom AM	Högskolan Väst	8 800 000	Production
		Etableringsprojekt: Test- o demomiljö AM	RISE IVF	1 500 000	Centra
	2020- 233	Etablera smart industricenter Värmland i Hagfors	Hagfors kommun	2 121 276	Centra
	20201 0189	AM Förstudie	Region Örebro Län	1 471 000	Overall
	2020- 46, 20204 910	ADDIFAB - Den additiva digitalstödda ide´fabriken 4.0	Luleå Tekniska Universitet	8 059 612	Overall
	2019- 32	I2P-From Idea to Printing of Metal Products	Luleå Tekniska Universitet	4 535 151	Knowledge & Education
	2020- 31	DAMI 4.0 Etablering	Karlstad Universitet	482 123	Centra
	2020- 4039	AM on the road	Sandvikens kommun	400 000	Centra
	2019- 30, 20240 59	Förstudie: Centrumbildning inom avancerad industri på Högskolan Dalarna	Högskolan Dalarna	697 294	Centra
	2019- 18, 20202 768	Förstudie Material X & AM i Uppsala	Region Uppsala	600 000	Overall
	20203 076	AM Nordic	Alfred Nobel Science Park	130 000	Overall
	2019- 2	ACES - Additive Coordination in East middle Sweden	Alfred NobelScience Park	1 121 218	Centra
	20180 01603	Smart industri i norra mellansverige II	Region Gävleborg	6 821 896	Overall
	ID 20201 562	TROJAM - 3DC Tröndelag - Jämtland 3D center AM metall	Mittuniversitetet	2 623 649	Centra
	2018- 406,	Utbildning genom AM	Hagfors Kommun	200 000	Knowledge & Education
	20180 0084	SpaceLab - Del av HV strategi att skapa nationell arena för AM	Högskolan Väst	9 708 000	Centra
	20170 0880	RepLab - AM tekniker inom återtillverkning och reparation	Högskolan Väst	20 000 000	Production

Financing body	DNR	Project Title	Coordinator	Contribution, SEK	RAMP-UP classification
TVV Regional ERUF	20170 00147	HybrAM - Hybridkomponent genom AM	Örebru Univ	500 000	Production
	C3TS	Arctic platform to create, 3D-print, test and sell	Luleå Tekniska Universitet	3 878 451	Centra
	2016- 363, 19518 4,	AT-Lab - Regionalt lab för AM vid Karlstad Univ	Karlstad universitet	6 925 112	Centra
	20160 1594	3DPrintPlus - Samverkansprojekt med syfte att etablera en förstärkt AM-platform	Chalmers Tekniska Högskola, Högskolan Väst	9 600 000	Centra
	612- 0801- 15	3D Print - Investering i EBM	Högskolan Väst	16 000 000	Centra
	20160 0021	Utbildningspilot AM	Alfred Nobel Science Park	150 000	Knowledge & Education
	3DTC	TTC kluster inom AM och 3D-röntgen	Alfred Nobel Science Park	9 602 214	Centra
	ID 20200 328	MapLab - AM med laserdeponering av pulver	Högskolan Väst	16 000 000	Process Stability & Product Quality
	303- 2872- 15,	CMT - Nordic business opportunities from coating and AM	Luleå Tekniska Universitet	2 392 722	Overall
	ID168 796	Additiv tillverkning som konkurrensfördel	Mittuniversitetet	1 700 000	Production

Financing
body
EU

DNR	Project Title	Coordinator	Contribution,	RAMP-UP
			Euro	classification
Тор АМ	Tailoring ODS materials processing route for additive manufacturing of high temperature devices for aggressive environments	RISE IVF, Questek Europé AB, Sandvik Mat. Techn.	954 955	Material
NUCO BAM	Nuclear Components Based on Additive Manufacturing	Ramen Valves AB	39 235	Standards & Certification
SoftD REAM	Software tools for hybrid robot based AM for industrial applications	RISE IVF, RISE Sicomp, Spectrum Technology	380 000	Production
DigiQ UAM	Digitalization of in-line QA for AM	RISE IVF, Chalmers	148 000	Production
SAMO A	Sustainable Al additive manufacturing for high performance applications	Luleå tekniska Universitet	2 800 000	Material
INNO ADDIT IVE	Innovation Challanges for Additive Manufacturing	LTU Business	0	Overall
ENABL E	European network for alloys behaviour law enhancement	Luleå Tekniska Universitet	527 319	Material

Financing body	DNR	Project Title	Coordinator	Contribution, SEK	RAMP-UP classification
EU	MANU FLA	AM using metal pilot line	Chalmers, IVF	4 533 418	Production
	INTEG ADDE	Intelligent data-driven pipeline for the manufacturing of certified metal parts through DED processes	Högskolan Väst	1 812 313	Production
	INEX- ADAM	Increasing Excellence on Advanced AM	Lunds Universitet	214 675	Overall
	SPAcE MAN	Sustainable Powders for AM	Luleå Tekniska Universitet	No info	Material
	AddM an	Innovative re-design and validation of complex airframe structural components formed by AM for weight reduction	Linköpings Tekniska Universitet	575 166	Process Stability & Product Quality
	AMOS	AM optimization and simulation platform for repairing and re- manufacturing of aerospace components	GKN Aerospace	490 000	Environment, Health & Safety
	EBM Perfor m	High-quality, high-speed EBM 3D printing by the integration of high- performance electron sources	Arcam AB	1 648 035	Process Stability & Product Quality
	TIALC HARG ER	TiAlN turbochargers - improved fuel economy reduced emissions	Arcam AB	168 392	Parts & System Design
	AMAZ E	Aiming towards zero waste & efficient production of high-tech metal products	Volvo Technology	149 625	Production
	HYPR OLINE	High performance production line for small series metal parts	Fcubic-DigitalMetal, Swerea IVF	813 859	Process Stability & Product Quality
	SASA M	Support action for standardisation in AM	SIS	9 615	Standards & Certification
	MERLI N	Development of aeroengine component manufacture using laser AM	GKN Aerospace, HV	716 979	Production
	HIRES EBM	High resolution EBM	Arcam AB	352 765	Production
	FASTE BM	High productivity EBM AM development for the part production systems market	Arcam AB	452 729	Production
	KARM A	Knowledge based process planning and design for additive layer manufacturing	Mittuniversitetet	13 228	Parts & System Design

Financing body	DNR	Project Title	Coordinator	Contribution, SEK	RAMP-UP classification
AFA	15024 6	Kartläggning av metall- partikelexponering samt möjliga hälsoeffekter vid professionellt arbete med 3D-skrivare.	Landstinget Östergötland	1 477 000	Environment, Health & Safety
ESA	G61A- 018QT	ESA AM powder material supply chain: verification and validation	Swerim AB	5 002 794	Material
VR	2019- 06068	Realtidsmätningar av additiv tillverkning med elektronstrålesmältning	Kungliga Tekniska Högskolan	7 980 000	Process Stability & Product Quality

Vinnova = Sweden's Innovation Agency

- KK = Knowledge Foundation
- SEM = Swedish Energy Agency
- SSF = Swedish Foundation for Strategic Research

TVV = Swedish Agency for Economic and Regional growth

- ERUF = European Regional Development Fund
- AFA = AFA Insurance
- ESA = European Space Agency
- VR = Swedish Research Council

Projects listed under TVV/Regional/ERUF may have ERUF as well as regional funding. For those projects, contributions from different financing bodies have been added together.

In 2018, Swerea was merged into RISE and Swerim. The projects coordinated by Swerea KIMAB were shifted to Swerim and the project coordinated by Swerea IVF and Swerea SWECAST were transferred to RISE.

More information about the projects can sometimes be found on the webpages of the funding agencies or in the database Swecris: https://www.vr.se/swecris.html#/.

Highlighted priorities in the RAMP-UP roadmap

In spring 2021, many companies said that activities related to <u>all</u> RAMP-UP challenges within the seven areas were still important. Some companies highlighted specific challenges and those are shown in below.

Roadm	ар	Activity start within 1-5 years	Prioritization scale Low to high
Material	Understand and predict properties	o Methods for fast Methods for o characterizat	material Tuning and tailoring of microstructure in AM-process
Part and system design		Design for A potential	M full
	Reproducibility and robustness	In process control	
Process stability &	Methods for product verification	Process simulation incl. software Less sensitive material hand in AM-machine and storage	lling
Product quality	Process and material predictability	Smart post processes Controlled recycling developed for AM of powder material	
Production		AM-machines in production systems incl. economical and technical feasibility	talization Smart automation
Environment, health, safety			
Standards & certification			
Knowledge & Education		Design for AM "know how"	Process understanding
			Prioritization scale

Roadmap	Activity start > 5 years – long term	Low to high
Material Tailored mater	ials for AM	
Part and system design		
Process stability & AM pro Product quality for defe	cesses with feedback loops ct free production	
Production	Big Data Digital twin	
EHS		
Standards & certification		
Knowledge & Education		

Jernkontoret

The Swedish Iron and Steel Producers' Association

Since its foundation in 1747, Jernkontoret has been owned jointly by the Swedish iron and steel companies. Jernkontoret represents Sweden's iron and steel industry on issues that relate to trade policy, research and education, standardisation, energy, the environment and sustainability as well as transportation issues. Jernkontoret also manages the joint Nordic research on steel. In addition, Jernkontoret draws up statistical information relating to the industry and carries out research into the history of mining and metallurgy.

E-post office@jernkontoret.se Organisationsnr 802001-6237

Postadress Box 1721, 111 87 Stockholm Webbplats www.jernkontoret.se