MICROSTRUCTURE EVOLUTION DURING HOT ROLLING

By: **Nima Safara**

Supervisors: Göran Engberg (HD) John Ågren (KTH) Fredrik Sandberg (SMT)

The PhD project

- SANDVIK (SMT) is working on improvement of the automated hot rolling process which is based on models from ABB.
- □ Models are used to predict the variables in rolling mills.
- The task is to identify existing models and improve those that need improvement, and replace those which have better alternatives with help of MIKRAB Toolbox.

Intentions for the project

- Modeling the Hot rolling process to determine optimum rolling schedules
- Modeling the annealing process
- Optimization of recrystallization and annealing
- Achieving a final microstructure with just one special type of carbide and less or no other types of carbides
- □ Fine grain size in final microstructure
- Homogeneous material properties due to homogeneous microstructure in all bands
- Reasonable tolerance in thickness and flatness

Individual Study Plan (ISP)

- Literature survey on microstructure evolution in hot working
- Learning the "MIKRAB Toolbox" by G. Engberg and model the hot deformation of 13C26
- Run a gap analysis between Toolbox and logged process data from the rolling mill
- Publish first technical paper from the results[2015]
- PhD courses (60-90 hp) [2014-2016]
- Scientific writing , Applied Thermodynamics and kinetics, computational techniques in material science, and Phase transformation

MIKRAB Toolbox

To make a applicable tool for predicting and controlling material development during a metal working process it is necessary to:

- □ Know the material properties
- Have a good process model (In 2002 created by Professor Göran Engberg using MATLAB)

MIKRAB Toolbox

Experimental

By using this model, linear interpolation of given experimental data will be used.

Simple models

Simple models

In order to describe a larger strain interval two models can be used simultaneously, using minimum value at each strain

$$\Box \text{ Ludwik} \qquad \sigma = \sigma_0 + k \cdot \sqrt{\varepsilon_{plastic}}$$

 $\Box \text{ Ludwik-Hollomon} \qquad \sigma = \sigma_0 + k \cdot \mathcal{E}_{plastic}^n \cdot \mathcal{E}^m$

□ Simplified Bergström for BCC $\sigma = \sigma_0 + k \cdot \sqrt{1 - e^{-\Omega \varepsilon_{plastic}}}$ The initial dislocation density is neglected in this simplified version.

Dislocation evolution models (Complex models)

Composite microstructure model

- Composite microstructures is referring to a mixed microstructure as for example in DP-steels.
- This model uses the Bergström equations for BCC and Ashby's concept of geometrically necessary dislocations.
- This model can deal with up to 5 different microstructure constituents with the possibility of each constituent to be composed of one hard and one soft phase.

Thermally activated deformation models

Thermally activated deformation models

Simple:

□ Simple Peierls-Nabarro model which works in many cases

Double:

 Peierls-Nabarro model for covering larger temperatures and strain rate intervals than the previous

Carbon-double:

□ It is similar to double, plus includes the influence of interstitial elements especially carbon in ferrite.

(These 3 mentioned models are not applicable for high temperatures.)

Solution hardening

Microstructure models and sub-models

Microstructure models and sub-models: Dislocation

Microstructure models and sub-models: Recrystallization and grain growth

Engberg recrystallization and grain growth model

$$\begin{split} \mathbf{R}_{\text{crit}} &= \frac{\gamma_{yr} - \gamma_{ym}}{\mathrm{cd} \cdot \mathbf{G} \cdot \mathbf{b}^{2} \cdot (\boldsymbol{\rho} - \boldsymbol{\rho}_{0}) \cdot \mathbf{k}_{\text{ps}} \cdot \mathbf{fr}} \qquad \frac{\mathrm{dR}_{\text{grow}}}{\mathrm{dt}} = \mathrm{kg} \cdot \mathbf{M}_{g} \cdot \mathbf{x}_{\text{v,rec}} \cdot \mathbf{F}_{\text{grow}}, \ \mathbf{F}_{\text{grow}} = \frac{\gamma_{gb}}{\mathbf{R}_{\text{rec}}} - \mathrm{kpg} \cdot \frac{\mathbf{f}}{r} \qquad \frac{\mathrm{dR}_{\text{recg}}}{\mathrm{dt}} = \mathrm{kr} \cdot \mathbf{M}_{g} \cdot 0.5 \cdot (\mathbf{x}_{\text{v,det}} + \mathbf{x}_{\text{v,rec}}) \cdot \mathbf{F}_{\text{recg}} \\ \mathbf{F}_{\text{recg}} &= -\frac{\gamma_{gr}}{\mathbf{R}_{\text{rec}}} + \frac{\gamma_{gm}}{\mathbf{R}_{\text{aub}}} + \mathrm{cd} \cdot \mathbf{G} \cdot \mathbf{b}^{2} \cdot (\boldsymbol{\rho}_{\text{def}} - \boldsymbol{\rho}_{\text{rec}}) - \mathrm{kps} \cdot \frac{\mathbf{f}}{r} \qquad \text{Rekristallisation om } \mathbf{R}_{\text{crit}} \leq \mathbf{R}_{\text{sub}} \text{ och} \qquad \gamma_{gm} \geq 0.75 \cdot \gamma_{gr} \\ \mathbf{N}_{\text{sites}} &= \frac{(1 - \mathbf{F}_{\text{rec}})}{cf \cdot \mathbf{R}_{def} \cdot \mathbf{R}_{\text{sub}}^{2}} \qquad \text{cf} = 4 \cdot \pi/3 \qquad \mathbf{N}_{\text{rec}} = \frac{1 - \mathbf{F}_{\text{rec}}}{\mathrm{cf} + \mathbf{R}_{\text{rec}}} \qquad \mathbf{N}_{\text{recurf}} = \mathbf{N}_{\text{rec}} \cdot for \ N_{\text{rec}} > N_{\text{rec}} \cdot \mathbf{N}_{\text{recurf}} = \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \\ \mathbf{N}_{\text{rec}} = \frac{1 - \mathbf{F}_{\text{rec}}}{cf \cdot \mathbf{R}_{def} \cdot \mathbf{R}_{\text{rec}}^{2}} \qquad \mathbf{N}_{\text{rec}} = \frac{1 - \mathbf{F}_{\text{rec}}}{\mathrm{cf} + \mathbf{R}_{\text{rec}}^{2}} \qquad \mathbf{N}_{\text{rec}} = \frac{1 - \mathbf{F}_{\text{rec}}}{\mathrm{cf} + \mathbf{R}_{\text{rec}}^{2}} \qquad \mathbf{N}_{\text{rec}} + \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} > N_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \leq \mathbf{N}_{\text{rec}} = \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} = \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} + \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} \cdot \mathbf{N}_{\text{rec}} + \mathbf{N}_{\text{rec}} \cdot \mathbf{N}$$

Microstructure models and sub-models: Vacancies

Microstructure models and sub-models: Precipitation/Dissolution of particles

$$\frac{dn^{\beta}}{dt} = c_{11} \cdot S_{\nu} \cdot D^{\alpha}_{mx} \cdot x^{\alpha}_{M} \cdot exp\left(-\frac{c_{12} \cdot \Delta G^{*}}{kT}\right) \qquad \Delta G^{*} = \frac{16\pi}{3} \frac{\gamma^{3}}{(\Delta G_{m}/V_{m})^{2}} \qquad \mathsf{Sv} = 1/\mathsf{R}$$

$$D_{mx} = x_{0x}^{\alpha} \cdot D_{0x} \cdot e^{\frac{Q_v \cdot Q_x}{R \cdot T}} \qquad \frac{dr}{dt} = x_v \cdot D_m \cdot \frac{\Omega}{r \cdot (1 - \frac{r}{R})}, \quad \Omega = \frac{x_0^{\alpha} - x^{\alpha \prime \beta}}{x^{\beta} - x^{\alpha \prime \beta}}, \quad R = min(R_{diff}, R_{dist})$$

Microstructure models and sub-models: Phase transformation

Necessary Input data

- From Gleeble tests: Stress and Strain curves in various Strain rates and Temperature
- 2. Rolling data: e.g. roller size, E modulus, Poison's ratio, rolling speed, force, and torque
- 3. Work piece (sheet) data: e.g. Thickness, width, Temperature, E and density
- Grain size, particles fraction, particles size and Recrystallization fraction of material before rolling (Metallographically)

Schematic diagram showing the thermal cycle experienced by samples (Gleeble)

Results from Gleeble tests

Strain rate 0.01 (1/s) 500 Stress (T=800 C) 400 Stress (T=850 C) True Stress (MPa) Stress (T=900 C) 300 Stress (T=1000 C) Stress (T=1100 C) 200 Stress (T=1200 C) 100 0 0 0.2 0.4 0.8 0.6 400 True Strain

Second particles fraction from TC

					Temper	rature (K / C)				
	1073.15 / 800	1133.15 / 860	1173.15 / 900	1223.15 / 950	1273.15 / 1000	1323,15 / 1050	1373.15 / 1100	1423,15 / 1150	1473.15 / 1200	1553,15 / 1280
	4.1976	0.6512	0	0	0	0.00	0.00	0.00	0.00	0.00
Volume	6.0472	7.8429	7.6731	6.7148	5.5589	4.19500	2.62160	0.84070	0.000000	0.00
fraction of	0.0176	0.0149	0.0098	0	0	0.00	0.00	0.00	0.00	0.00
phases	0.0335	0.0335	0.0335	0.0335	0.0335	0.03340	0.03340	0.03330	0.033100	0.032400
(%)	0.1648	0.0252	0.0243	0.0238	0.0243	0.02310	0.02270	0.02190	0.020600	0.016800
Fraction Sum (%)	10.4607	8.5677	7.7407	6.7721	5.6167	4.2515	2.6777	0.8959	0.0537	0.0492

Grain size measurement (900° C)

Grain size measurement Results

 Sample preparation, polishing, and grain measurement were carried out according to ASTM E112.

					Grain size (μm)		
	°C	ASTM F112	25X	ASTM F112	ASTM category	50X	Histogram 25X	mean arain size (um)
	900	1.5	253	1	6 to 10	226	216	231
Temperature (C)	1050	1.2	255	0	2 to 8	353	221	276
	1150	1.2	275	0	4 to 11	302	226	267

Modeling with the Toolbox

Starting with importing data

dd to batch: no file;X empty;cX used;tX empty i/le(s): C:\PhD files\Calculation results\Excell file for iheet: 1050 Header line Variable Data for Select Temp	T toolbox- Data from Flow Stress folder-SMT Gle T T T T T T T T T T T T T T T T T
dd to batch: no file;X empty;cX used;tX empty ile(s): C:\PhD files\Calculation results\Excell file for iheet: 1050 Header line Variable Data for Select Temp	toolbox- Data from Flow Stress folder-SMT Gle Stress 1 Data in columns or selected variable Selected variable
ile(s): C:\PhD files\Calculation results\Excell file for heet: 1050 Header line Variable Data for Select Temp	r toolbox- Data from Flow Stress folder-SMT Gle
heet: 1050 Variable Data fo Select Temp	
heet: 1050 Header line Variable Data fo Select Temp	es: 1 Data in columns or selected variable
Header line Variable Data fo Select Temp	es: 1 Data in columns
Variable Data for Select Temp	or selected variable Selected variables
Select Variable Data to	or selected variable Selected variables
Select v remu	acrature (TC1C_0)
	temperature
Time zero 1038.2 Temperature (TC1C.9) 1039.52 Strain 1047.72 Stress (T=1050 C) 1050.98 Strain rate 1047.72 Grain size 1047.28 Inclusion fraction 1044.8 inclusion Diameter 1044.8 recr.frac 1045.38 1045.38 1045.34 1045.38 1045.38 1045.38 1045.38 1045.38 1045.38 1045.38 1045.38 1044.8334 1040.4889	time plastic strain strain rate <u>temperature</u> grain size recr. fraction flow stress Incl. fraction Incl. diameter

Material composition

File V	/iew Data On	tions Heln			
		Get cor	mosition data from fil	le	
		001001	nposition data nom n		
dd to t	no file;X us	sed;cX used;tX empty			•
File(s):	C:\PhD files\Calcul	ation results\Excell file	for toolbox- Data from	m Flow Stress folder-SMT	Gle 🔻
Sheet:	composition				-
		Header	ines: 2	Data in rows	
				Data in Tows	
	Variable	Data	for selected variable	e Selected	variables
Sele	ct	•	N	Ν	
		▲ 0.04		· ·	
				<u> </u>	-
hree lis the nar	tboxes, from left: va me of the selected v	ariables, data for the se variable is recognized a	elected variable, selected variable to a wanted variable to	cted variables the correct name is displa	ved

Selecting experiment

SelectExperiments File Options Help	<mark>کی</mark> D تا ا
File: C:\PhD files\Calculation results\Excell file for toolbox- D Available experiments Selected Adiabatic lowe compositions (1:yes, 0:no)	$ \begin{array}{c} $
Select Unselect 1050 - Adiabatic U	Upper 100 plastic strain

Choosing models

ile <u>O</u> ptions <u>M</u>	odels <u>H</u> elp	
DmM=Dm0*exp[-(Qm DmR=Dm0*exp[-(Qm	0-Qv-Qmd)/(R*T)] 0-Qv)/(R*T)]	
austenite 🔻	Check parameter(s) to optimis	ed for
Dm0	7e-05 optimi	sation precipitation_hardening: none
Dm0 A Qm0 Question Question Question	7e-05 ▲ 286000 149000 2.4 - -20000 0.25 1.9935e+09 1.00142e+12 0.25 2 11 1e+24 -60000 0.75 11 1 0.2 1.2 0.3 0.8 1.2 0.55 137000 30000 0.2 2.7697e-05 0.8 1e-10	transformation: none precipitation: constant vacancies: deformation_thermal recrystallisation: Engberg solutedrag: none crosslip: none dislocation_recovery: climb
	0.5	

Thermo-Calc calculations

Primary simulation results

Rolling models

Inputting rolling data

Rolling data	Udld	
Diameter	mm	1
7 Speed	min m/e	
Youngs modulus	MPa	•
Poissons const.		
Back tension		_
Front tension	MPa	•
Roll force	kN	-
Roll torque	kNm	-
- Friction	0.1	
- Passes		
No. of passes	1	

Inputting work piece data

WorkpieceData	
le <u>H</u> elp	
Check available strip data	9
Strip data	
Vidth	mm 👻
✓ Initial thickness	mm 💌
Final thickness	
Voungs modulus	MPa 🔻
Poissons const.	
— Models —	
Models No. of models	1
Models No. of models Choose model no.:	1
Models No. of models Choose model no.: Temperature Type of calculation Isotherma	1 1 individual
Models No. of models Choose model no.: Temperature Type of calculation Isotherma initial	1 1 individual Celsius
Models No. of models Choose model no.: Temperature Type of calculation Isotherma initial Specific heat	1 1 I ✓ I Celsius J/kg*degree

Choosing Flow Stress model

Yield criteria

Yield criteria

Model parameters

ModelParameters		
<u>F</u> ile <u>V</u> iew <u>H</u> elp		
Friction-Hill	Hitchcock	
Parameter (calc.param)	Given value	Calc. value
Roll diameter (flattend)		0
Roll speed (av. strain-rate)		0
Back tension		
Front tension		
Roll force		0
Roll torque		0
Roll E-modulus		
Roll Poissons const.		
Strip width (L/hm)		0
Strip entry thickness		
Strip exit thickness (eq.pl.strain)		0
Strip E-modulus		
Strip Poissons const.		
Friction coefficient		
Friction factor		
Temperature calculation	Isothermal 💌	
Initial temperature (1000/T[K])	1100	
Yield criterion	von Mises 🔻	
Strain-rate model	none 💌	
✓ flowstress,low-1 (p/2k)	2e-05	0
✓ flowstress,low-2	0	
✓ flowstress,low-3	1e-07	
✓ flowstress,low-4	1	
✓ flowstress, low-5	1000	
identity	not given	

Calculation

Model variables

Time: 0.384	11 O Scale	time max time step	10 ode113ny •	
Relative error:	1e-06	ODE solver:		
	Redraw figures	Scale factor:		
Va0	1e-06	Min timestep for output:	0.001	
Continue on exit	Absolute errors	Final values	Scale factors	
Va0 Varec Vadef raadef ragec ragdef ragrec Rdef Nrec Rrec Rsubdef epIrec Temp Rsubrec inclusion-ng1 inclusion-rg1	▲ 1e-06	2.148019852798898e-06 2.148019852798898e-06 0.0001242717644219869 3479429365406791 100142000000 6.600833345039976e+16 100142000000 2.638959844031741e-06 1e-10 9.498715597640547e-09 9.498715597640547e-09 19.05360200470383 1373.15 9.498715597640547e-09 8733380538398586 2.499999993688107e-07	1000000 465545.045450575 15960.3305559681 1.13666970582385e-15 9.98582013540772e-13 1.51496022960711e-17 9.98582013540772e-13 621389.141417289 1000000000 105277391.424204 51160456.5819216 0.151388217681525 0.000785453402976868 51086384.1898644 1.14503197885772e-16 4000000.01009903	

Results for rolling (pass 1)

And To be continued!

Thank you !

