Integrated Design of Material, Manufacturing and Product Performance

Ideo_M^2P^2
Statement

Computational methods for Concurrent design of material, manufacturing process and product is a key factor for competitiveness and sustainability in 21st century.

Dave McDowell
Strategic relevance

• The competiveness of Swedish companies consists mainly in **competence**. The knowledge to design and produce products, services etc that are ‘needed’.

• We have been and still are in many areas world leading. However, above is not a unique Swedish strategy and the competition is fierce.

• There are still opportunities for the classical mechanical industry to go one step further.
Ideo_M2P2

Key ingredients:

- Models based engineering design.
- Creating a larger design space enabling disruptive engineering solutions.
- Transforming engineering design by merging materials, process and product design. Eliminating its dichotomy into materials science, production and mechanics as well as restructuring engineering education.
- Business role between material user and producer will change.
State of Art and Ideo_M²P²

Related strands in US

- ICME
- Hierarchical Multiscale Resolution Theory
- MGI 2xfaster&cheaper www.mgi.gov
- MSA Material State Awareness
- Statistical calibration
- AIM Accelerated Insertion of Materials
Ideo_IM2P2

Simultaneous and hierarchical design of
Performance
Product
Manufacturing process
Material properties
Geometric distribution of properties1
Material microgeometry2
Microstructure
Design of initial chemical composition

1reinforcements, surface layers or barriers
2powders size distribution, granular materials
Paradigm Shifts in Engineering Methods

- Merger of Material, Production and Design
- Science and Model Based Engineering
- Use of manufacturing for creating material properties rather than attempting to minimize its negative effects

Leading to improved (incremental and disruptive) materials, manufacturing processes products w.r.t.
- Performance including multifunctionality and
- Sustainability.
Key modelling ingredients:

- Thermodynamics
- Engineering Materials (mechanical, thermal, corrosive, electrical…)
- Small scale(s) modeling and homogenization
- Virtual material testing
- Macroscopic material models
 - Process models
 - Product models

Integrated into FE-code according to the project initiative #20